• Title/Summary/Keyword: 포졸란 반응성

Search Result 69, Processing Time 0.024 seconds

Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement (전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known by-product pozzolanic materials. Undensified and densified silica fume, ASTM class F and class C fly ash, and metakaolin were chosen as well-known pozzolanic materials, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property, were chosen for comparison. Drop in electrical conductivity at $40^{\circ}C$ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at $450{\sim}500^{\circ}C$ was also measured to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by incorporation of various waste materials. According to the experimental results, using "difference between maximum conductivity value and conductivity value at 4 hour" was found to be a reasonable approach to determine pozzolanic activity of a material. Pozzolanic activity measured using electrical conductivity correlates very well with that measured using the amount of Ca(OH)2 remained in the cement paste. Relatively good agreement was also found with electrical conductivity and 28 day compressive strength. It was found that electrical conductivity measurement can be used to evaluate pozzolanic activity of unknown materials.

Study on the Pozzolan Reaction Degree of Palm Oil Fuel Ash as a Mineral Admixture for Sustainable Concrete (POFA를 혼입한 시멘트의 포졸란 반응에 관한 연구)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.335-336
    • /
    • 2010
  • This paper presents experimentally investigated the effects of pozzolan made from various by-Product materials on mechanical properties of mortar. Fly ash(FA), slag (BFS), and palm oil fuel ash (POFA) were partially used to replace Portland cement. The results suggest that mortars containing FA, BFS, and POFA can be used as pozzolanic materials in making concrete with 28day compressive strength. After curing, the mortar containing 10-30% FA or POFA, and 30% BFS exhibited compressive strengths that of the original Portland cement (OPC). The use of FA, POFA, and BFS to partially replace Portland cement has evaluation method of the Assessed Pozzolan-activity index.(API)

  • PDF

A Preliminary Investigation on Pozzolanic Activity of Dredged Sea Soil (소성 준설토의 포졸란 반응성에 대한 기초 연구)

  • Kim, Ji-Hyun;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.531-536
    • /
    • 2014
  • Recently, the amounts of dredge sea soil in south Korea have been increasing because of various maintenance works at harbors and rivers. Dredged sea soil contains various contaminants. Hence, prior to recycling the dredged sea soil, the various contaminants should be removed to prevent a secondary contamination due to the leaching of hazardous chemicals. Pretreated dredged sea soil can be buried under the ground or used for land reclamation. In this study, however, pretreated dredged sea soil was used to investigate the level of pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined. According to the XRF result, the main components of dredged sea soil were $SiO_2$ of over 55%, and $Al_2O_3$ and $SO_3$ of some amounts. Results from XRD and TG/DTA showed that pretreated dredged sea soil can be used as a pozzolanic material. When dredged sea soil was thermally treated for 90 min at $550^{\circ}C$, a compressive strength result was similar to that of control mortar.

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by Heat Treatment Condition - Focused on discarded Bentonite by cooling using of Water - (소성조건에 따른 폐 벤토나이트의 포졸란 반응성에 관한 실험적 연구 - 주수냉각을 중심으로 -)

  • 장진봉;정민수;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • This study aims to propose a fundamental report for pozzolan reaction of discarded Bentonite by heat-treatment as concrete mineral admixture. As discarded bentonite is clay mineral to contain a great quantity a lot of $SiO_2$ and $Al_{2}O_{3}$, it is anticipated to reveal pozzolan reaction ability by heat-treatment. To find out pozzolan reaction ability of discarded Bentonite slurry by heat-treatment, the experiment is excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite slurry can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite slurry is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

  • PDF

Comparative Analysis of Various Industrial By-Products Pozzolanic Activity (다양한 산업부산물들의 포졸란 반응성 비교분석)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.32-33
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known pozzolanic materials. Uncondensed and densified silica fume, two ASTM class F fly ashes with different calcium contents, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property were chosen for comparison. Drop in electrical conductivity at 40℃ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at 450~500℃ was also measured used to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by various waste materials.

  • PDF

An Experimental Study on Pozzolanic Reactivity of the Neutron Shielding Mortar Containing Borosilicate Glass Powder (붕규산 유리 분말을 혼입한 차폐용 모르타르의 포졸란 반응성에 관한 실험)

  • Jang, Bo-Kil;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.162-163
    • /
    • 2015
  • A borosilicate glass was powdered to incorporation into the cement for the purpose of improving the neutron shielding performance of concrete. The particle size of the borosilicate glass powder was prepared by a similar to that of cement. 50×50×50mm size of cube specimens were measured a compressive strength. As a result, compressive strength of 10% borosilicate glass powder replaced specimens were improved than that of plain specimens.

  • PDF

Preliminary Experiments on Pozzonalic Activity of Dredged Sea Soil (소성 해양 준설토의 포졸란 반응성 시험)

  • Kim, Ji-Hyun;Moon, Hoon;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.49-50
    • /
    • 2014
  • Dredged sea soil contains various contaminants. First priority to recycle dredged sea soil is to pretreat it to remove various contaminants because recycling dredge sea soil without any pre-treatment may cause a secondary contamination due to the leaching of hazardous chemicals. In this study, pretreated dredged sea soil was used to investigate pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined to evaluate pozzolanic activity. According to the results, pretreated dredged sea soil has some possibility to work as a pozzolanic material. When dredged sea soil was heat treated for 90min at 550℃, compressive strength was shown to be comparable to that of plain cement mortar.

  • PDF

An experimental study on shrinkage and crack resistance of Hwang Toh concrete mixed with PET fiber (PET보강섬유를 혼입한 황토콘크리트의 건조수축 및 균열저항성에 관한 실험적 연구)

  • Kim, Hyun-Young;Kim, Sung-Bae;Yi, Na-Hyun;Han, Byung-Goo;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.797-800
    • /
    • 2008
  • To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang Toh which is broadly deposited in Korea is well known as a environment friendly material and the activated Hwang Toh which has the property of pozzolan reaction is practically used as a mineral admixture of concrete. PET fiber which is made by recycled PET bottle controls micro crack in concrete. But the study about concrete mixed with reinforcing fiber is not enough and the property of Hwang Toh concrete mixed with PET fiber is more complicated case. So this study performed drying shrinkage experiment to analyse mechanical property of Hwang Toh concrete mixed with PET fiber.

  • PDF

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites (포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2022
  • In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.