• Title/Summary/Keyword: 평형구조

Search Result 654, Processing Time 0.024 seconds

Topological Structural Optimization under Multiple-Loading Conditions (Multiple-loading condition을 고려한 구조체의 위상학적 최적화)

  • 박재형;홍순조;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 1996
  • A simple nonlinear programming(NLP) formulation for the optimal topology problem of structures is developed and examined. The NLP formulation is general, and can handle arbitrary objective functions and arbitrary stress, displacement constraints under multiple loading conditions. The formulation is based on simultaneous analysis and design approach to avoid stiffness matrix singularity resulting from zero sizing variables. By embedding the equilibrium equations as equality constraints in the nonlinear programming problem, we avoid constructing and factoring a system stiffness matrix, and hence avoid its singularity. The examples demonstrate that the formulation is effective for finding an optimal solution, and shown to be robust under a variety of constraints.

  • PDF

A Study on the Analytical Technique of Stability and Buckling Characteristics of the Single Layer Latticed Domes (단층 래티스돔의 안정해석기법 및 좌굴특성에 관한 연구)

  • Han, Sang-Eul
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard to geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

The Molecular and Crystal Structure of tricyclazole, $C_9H_7N_3S$ (Tricyclazole, $C_9H_7N_3S$ 의 분자 및 결정구조)

  • Keun Il Park;Young Kie Kim;Sung Il Cho;Man Hyung Yoo
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.152-157
    • /
    • 2002
  • The molecular and crystal structure of Tricyclazole, C/sub9/H/sub7/N₃S, has been determined by single crystal x-ray diffraction study. Crystallographic data for title compound: Pca2₁, a=14.889(1) Å, b=7.444(1) Å, c=15.189(2) Å, V=1683.3(3) ų, Z= 8. The molecular structure model was solved by direct methods and refined by full-matrix least-squares. The final reliable factor, R, is 0.047 for 1533 independent reflections (F/sub o//sup 2/)). The asymmetry unit contains two molecules which are in plate conformation, parallel to each other and related by a pseudo four-fold screw on the b-direction.

A Simplified Method for Creep Analysis of R/C Beams (철근콘크리트 보의 크리이프 단순 해석법)

  • 곽효경;서영재
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.267-280
    • /
    • 1997
  • This paper deals with the development of simplified methods to predict the creep deformation of reinforced concrete beams. The layer approach based on a degenerate kernel of compliance function in form of Dirichlet series is mentioned and a simplified analytical method derived from the equilibrium equations and compatibility conditions is proposed to overcome the sophisticated calculation procedures in the classical creep analysis. Correlation studies between analytical and experimental results and design codes are conducted with the objective to establish the validity of the proposed methods. Besides, various parameter studies are conducted with the objective to identify the effects of cracking, steel ratio and sectional shape in the creep deformation and the obtained results are discussed.

  • PDF

A study on behavioral characteristics of concrete lining based on the equations of relaxed rock loads (이완하중 산정식에 따른 콘크리트라이닝 거동특성에 관한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon;Moon, Hoon-Ki;Shin, Yong-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.443-450
    • /
    • 2010
  • A concrete lining of NATM tunnel had been considered as interior materials. But recently we consider it as structural materials. Therefore we must consider various loads. Relaxed rock load is a main load which decides thickness and reinforcement presence of concrete lining. In practice conservatively, Terzaghi's rock load theory has been accepted to estimate relaxed rock loads in urban subway tunnel design. This study investigates the equations of relaxed rock loads used in the design of NATM concrete lining. Structural analysis are executed based on various equations of relaxed rock loads, and concrete lining forces are compared.

Nonlinear Finite Element-Boundary Element Analysis of Multi-Layered Structural Systems (유한요소와 경계요소의 조합에 의한 다층 구조계의 비선형 해석)

  • 김문겸;허택녕;이상도
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.57-67
    • /
    • 1994
  • It is usual that underground structures are constructed within a multi-layered medium. In this paper, an efficient numerical modelling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity dominates, and the boundary elements are applied to the far field where the nonlinearity is relatively weak. In the boundary element modelling of the multi-layered medium, fundamental solutions are not readily available. Thus, methods which can utilize existing Kelvin solutions are sought for the interior multi-layered domain problem. The interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution, by discretizing each homogeneous subdomain and enforcing compatibility and equilibrium conditions between interfaces. Developed methodology is verified by comparing its results with those from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient.

  • PDF

The Design/Analysis of High Resolution LEO EO Satellite STM (지구저궤도 고정밀 관측위성 구조 및 열 개발모델 설계/해석)

  • Kim, Jin-Hee;Kim, Kyung-Won;Lee, Ju-Hun;Jin, Ik-Min;Youn, Kil-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.99-104
    • /
    • 2005
  • The major role of a spacecraft structure is to keep and support the spacecraft safely in all the launch environment, on-orbit condition and during ground-transportation and handling. In a satellite development, a structural and thermal model (STM) is developed for two goals ; demonstration of a structural and a thermal stability. In the structure point of view, STM is used to verify the static/dynamic characteristics of structure in the initial stage of development. In this paper, the structure design/analysis of high resolution LEO earth observation satellite STM is described. Also, a low level sine vibration test is performed and compared to the results of finite element analysis.

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Genetic Diversity and Structure of a Rare and Endemic, Spring Ephemeral Plant Corydalis filistipes Nakai of Ullung Island in Korea (울릉도 희귀.특산 식물 섬현호색의 유전적 다양성과 구조)

  • Kim, Jin-Seok;Yang, Byeong-Hoon;Chung, Jae-Min;Lee, Byeong-Cheon;Lee, Jae-Cheon
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.247-252
    • /
    • 2006
  • For the spring ephemeral and myrmecochorous perennia, Corydalis filistipes Nakai (Fumariaceae), rare and narrow endemic to Ullung Island in Korea, genetic diversity and structure of 4 subpopulations of the species were investigated with allozyme markers. Levels of genetic diversity (A=1.73, $P_{95%}$=61..2%, Ho=0.201, He=0.167) were relatively lower than those of other endemic species with widespread distribution range, but considerably higher than other endemic species with similar life history traits isolated in island. The moderate level of genetic diversity within subpopulations in C. filistipes is characteristic of the species with predominantly outcrossing, myrmecochorous seed dispersal by dual function of the elaisome and mode of sexual and asexual reproduction by the cleistogamy. The analysis of fixation indices showed an overall excess of heterozygotes (mean $F_{IS}=-0.1889,\;F_{IT}=-0.1226$) relative to H-W expectations. About 5.6% of the total genetic variation was found among subpopulations ($F_{ST}$=0.0557). The strategies of reasonable conservation and management, and the maintenance mechanism of genetic diversity of Corydalis filistipes Nakai, endemic plant species in Korea were discussed.

Ab Initio Studies of Hexahydroxybenzene Triscarbonate ($C_9O_9$) and Analogous Compounds ($C_9S_9,\;C_9O_6S_3,\;C_9O_3S_6$) (Hexahydroxybenzene Triscarbonate($C_9O_9$)와 유사화합물들의 ab initio 연구)

  • Kwon, Young Hi;Koo, Min Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • An ab initio molecular orbital method has been applied to investigation of molecular properties and equilibrium geometries for hexahydroxybenzene triscarbonate (C9O9) and its analogous cyclic compounds (C9S9, C9O6S3, C9O3S6). In these works, the optimized geometry of each compound has been obtained at HF and MP2 levels. These results have shown that the optimized geometries of these compounds prefer D3h planar structure to C3v bowl structure. Calculations of harmonic vibrational frequencies have been also carried out at HF/3-21G* level to analyze normal modes of these compounds. Bonding characters of these compounds are studied by Mulliken and natural populations obtained at HF/6-31G* level. We have also studied the structures and the populations of C6O6 and C6S6 at HF and MP2 levels which are obtained by pyrolyses of C9O9 and analogous compounds. In addition, the single point calculations have been performed to predict the approximate energy barrier for pyrolysis of each compound.

  • PDF