Multiple-loading condition2 T 2{8t T+ A| 2| IAISHA 2| X3}
Topological Structural Optimization under Multiple-Loading Conditions
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Abstract

A simple nonlinear programming (NLP) formulation for the optimal topology problem of structures is
developed and examined. The NLP formulation is general, and can handle arbitrary objective functions
and arbitrary stress, displacement constraints under multiple loading conditions.- The formulation is
based on simultaneous analysis and design approach to avoid stiffness matrix singularity resulting from
zero sizing variables. By embedding the equilibrium equations as equality constraints in the nonlinear
programming problem, we avoid constructing and factoring a system stiffness matrix, and hence avoid
its singularity. The examples demonstrate that the formulation is effective for finding an optimal sol-
ution, and shown to be robust under a variety of constraints,

Keywords : topology, optimization, nonlinear programming formulation(NLP), simultaneous method,
SQP, single-loading condition, multiple-loading conditions

1. Introduction osed an LP formulation of the problem, but
could guarantee an optimal topology only for
The classical paper by Dorn, et. al.? prop- stress constraints and single loading condi-
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tions, Attempts to generalize the methodology
to displacement constraints, multiple loading,
etc., lose the guarantee of optimality in the
general case(e.g. [5](14][16][18]). Other ap-
proaches have employed heuristics to search
through the topological space and NLP to sol-
ve the fixed-topology problem(e.g. [10]). Mot-
ivated by complexity and lose of guarantee of

optimality of conventional approaches, we pres-

ent a general nonlinear programming (NLP)
formulation of the topology problems. Auther
has presented an NLP formulation for the opti-
mal topology problem of structure.! The for-
mulation guarantees at least a local minimum,
Stiffness matrix singularity is avoided by
embedding the equilibrium equations as equal-
ity constraints, However, the formulation is
focused only on a single loading condition.
Therefore it would be desirable to expand the
formulation to multiple-loading conditions. The
new formulation follows similar development
of the previous NLP formulation, That is, the
formulation is based on simultaneous analysis
and design, in which behavioral constraints are
embedded as equality constraints in optimiza-
tion model. However, in this study the formu-
lation is modified to generalize the method-
ology to a variety of constraints, multiple-load-
ing conditions as well as a single loading con-
dition,

Our development addresses weight minimiz-
ation of structures molded by finite elements,
subject to stress, displacement, and linking
constraints under multiple-loading conditions,

2. NLP Formuiation for the Topological Struc-
tural Optimization

Our development addresses the minimum
weight of structures under multiple loads. It
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corporates zero sizes: hence, the simultaneous
method is used to insure that matrix singularit-
y is avoided. Simultaneous formulation may be

expressed as:!

gi(x) =Cuu(x) —up <0 (1)
2(x) = Culx) ~ o< 0 (2)
ge(x) = K(x)u{x) — P(x) =0 (3)
where

g1{x) displacement constraints
g1(x) stress constraints

C,, C; matrix of constant coefficients
K(x) stiffness matrix

P(x) a vector of applied loads

Up displacement limits

o stress limits

By embedding the equilibrium equations as
equality constraints, one can avoid its singul-
arity. It does not require stiffness matrix in-
version, [t requires only their evaluation, not
their solution, at each optimization iteration.

Formulation

The NLP for the optimal topology is stated
as follows :

objective function:
k
minimize F=total weight=Y Aipit; (4)
i=1

constraints:
subject to:
Equilibrium equation:

K u;—P;=0 J=1,2,, 0 (5)

Stress constraints:
i=1,2,, k (6)

L U
o] < o0 < oy

Displacement constraints:

< up < oY (7



Thickness constraints:

th<ti<t! =12 k (8)

Parameters are defined as:

k  number of total elements

p number of loading conditions

n number of degree of freedom after ap-
plying boundary condition

K nxn-stiffness matrix

P, n-vector of applied nodal loads for
loading condition j

o, of stress lower (upper) bounds of el-
ement 1 for loading condition )

uf, u¥ n-vector of nodal displacement low-
er (upper) bounds for loading con-
dition )

t- tY thickness lower (upper) bounds of
element i

A; area of element 1

pi density of element i

and the variables are defined as:

t; thickness of element 1
u; n-vector of nodal displacement for

loading condition j

Remarks

- All functions (4)-(8) are assumed to be
continuously differentiable.

- The nonlinearity in this formulation 1is
found in the equilibrium equations (5) and
stress constraints (6), which include bilin-
ear product of displacement and thickness.
The objective function (4) and all other
constraints are linear,

- If none of the tLi is zero, then the NLP
(4)-(8) is no longer a topological design
problem and topology is fixed by the thic-
kness lower bounds.

- There is no guarantee that a unique mini-
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mum exist, or that a local minimizer coin-
cides with a global minimizer,

- A single stress constraints (6) or displace-
ment constraints (7) can be chosen, if
needed.

2.4 Sequential Quadratic Programming Al-
gorithm

The sequential quadratic programming
(SQP) method is used to solve the NLLP. This
method is based on the iterative formulation
and solution of quadratic programming subprob-
lems, obtains subproblems by using a quadratic
approximation of Lagrangian. That is:

minimize 12 piB (xi, A )px + V Fixi) 'px
subject to:

gi(x) Tptgi(x) =0 =12, M
2.(x) TPt (xi) 20 =My, e, M

xI‘—kapkst—xk

where By is a positive definite approximation
of the Hessian of the Lagrangian function, X
represents the current iterate points. Let py be
the solution of the subproblem. A line search
1s used to find a new point xx+;, where

Xkt+1 = Xk T apk a € (0,1]

such that a merit function will have a lower
function value at the new point. The augmen-
ted Lagrange function is used here as the mer-
it function, When optimality is not achieved,
By is updated according to the BFGS formula.
This algorithm may generate infeasible points
during the solution process. Therefore, if feasi-
bility must be maintained for intermediate poin-
ts, then this routine may not be suitable.
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A summary of SQP algorithm

1. Update ¢, and By

The vector cy represents the equality con-
straints in addition to any active inequality
constraints,

2. Check optimality (if YES, then termin-
ate: if NO, then go to step 3)

3. Solve QP subproblem to find a search di-

rection pg

T —V

Ck

By — Ak
—Ax 0

Pk
Ak

I

where Ay is the jacobian of the active con-
straints, A the vector of Lagrange multipliers,
V fx the gradient of the objective function and
ck the value of the constraints at the current

iteration.
4. Perform a line search on some suitable de-

fined merit function which involves the objec-
tive function and constraints to determine a

step length a.

5. Put:
Xk+1 < Xk + apx ac (0, 1]
k <« k+1
6. Gotostep 1
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Fig. 1 Model for Examples
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3. Examples of NLP for Topology Optimization

The NLP formulation of the topology prob-
lem is tested with 12x20 element rectangular
model fixed at bottom depicted in Figure 1.
The initial guesses for the state variables(dis-
placements) are computed from the equilib-
rtum. equations and an initial guess for thick-
ness of 0.5cm for an initial design to initiate
the SQP method. Exact derivatives are used
to construct the Jacobian matrix.

Common data for problems

- Aluminum (Al 6061-T6) is the material, i.

e.

E=70GPa  ¢,—240MPa
»=0.002710kg /cm®

7,=140MPa
v=0.34615

- Triangular finite elements are used.

- The structure is in plane stress.

- For stress constraints, 2 principle stresses
(o, o2) and maximum shear stress (7.
are calculated for each element, and these
stresses should be less than (or equal to)
the maximum tension (compression, shear)
stresses. That is,

o] < oy
o) = —oy

Tmax < Ty

- For thickness constraints, following is
used:

0<t< 10cm

- Density and areas of all elements are equal

in each example, hence, the objective fun-
K

ction is set to F=Y_ t,. The minimum vol-
1=1

ume is multiplied by density and area to



obtain weight.

- If thickness of any element reaches zero,
stress in that element is defined as zero.

- SQP terminates when the optimality con-

dition is less than 1077

3.1 Single loading condition

At first, the NLP formulation is tested with
3 cases under a single loading condition. The
NLP formulation for this example can be

expressed as:
k
minimize F=Y t; (9)
1=1

subject to:
Equilibrium equation: one of the equations

(10)-(12)
Ku—-P=20 (for case 1) (10)
Ku—W=0 (for case 2) (in)
Ku— (P4+W) =0 (for case 3) (12)
Stress constraints:
—24MPa < ¢ < 240MPa (13)
Displacement constraints:
—0.lcm < u < 0.1cm (14)
Thickness constraints:
0.0cm < t < 10cm (15)

This model contains 140 D.O.F. and 120 ele-
ments under a single load. This problem has
one equality constraints and five inequality
constraints(three stress, one displacement and
one thickness constraints), Hence, it has total
260 (D.O.F + total elements) variables and
760 constraints, Therefore, its Jacobian size is
760 % 260.

Figure 2-4 show the optimal topology. Inter-
estingly, element 18, 38, 58 and 119 in case 1,
and element 85 and 115 in case 2 have nonzero
thickness. However, these elements have zero
thickness in case 3(which is the combination
of case 1 and case 2). Symbolically,

SRS S E S EL

Applied loads: Pcasel + Pcasez = Pcases
however,
Resulting TODOIOgyl Teasel + Teasez # Teases

3.1 Multiple-loading condition

To demonstrate the capahility of the NLP
formulation to solve multiple load problems,
we solve the design problem of the previous
section. In previous section, two independent
loading conditions (W in case 1, P in case 2)
are applied, and the structural topology is
optimized under each separately. In this sec-
tion, optimization is carried put as a multiple
loading condition problem. The NLP formu-
lation under multiple loading conditions of this
example can be expressed as follows:

k

minimize F = ¥ t; (16)
1=1

subject to:
Equilibrium equation:
Ku —P=0 (17)
Ku —-—W=90
Stress constraints:
—-24MPa < oy < 240MPa (18)
—24MPa < ¢ < 240MPa
Displacement constraints:
—0.Icm < u; < 0.1cm (19)
—0.lcm < u; < 0.1cm
Thickness constraints:
0.0cm < t < 10°cm (20)

In previous section case 3 implied that two
loads were applied at the same time(i.e. case
1U case 2). However, multiple loading means
“case 1 N case 2" satisfying the same optimal
thickness. It has twice D.O.F. and stress and
displacement constraints of the single loading
condition case,

As a result, the optimal topology under mul-
tiple loading is not the intersection of the opti-
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mal topologies of each individual loading con-
dition, i.e., element 61 and 119 in case 1, and
elements 38 and 58 in case 2 have nonzero thic-
kness. However those elements under multiple
loading conditions have zero thickness. Fur-
thermore, although element 96 in both case 1
and case 2 has nonzero thickness, that element
under multiple loading conditions has zero thic-
kness. Number of iterations to converge to the
optimality and minimum weights are shown in
Table 1.
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Fig. 4 Optimal topology of case 3
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Fig. 5 Optimal topology of multiple loading condition
case

Table 1 Optimal results

case Initial weight No. Optimal weight
number (kg) of interation (kg)
case 1 0.0813 40 0.02885943
case 2 0.0813 24 0.02879123
case 3 0.0813 50 0.05677134
multiple loads 0.0813 51 0.03427712

4. Some other examples

Several problems were tested to study the
NLP formulation. In this section, these opti-
mal topologies are shown in Figures 6-8,

Fig. 7 Original and Optimal topology



Fig. 8 Original and Optimal topology

5. Conclusion

We have presented an NLP formulation for
the optimal topology problem of structure. The
formulation 1s based on simultaneous analysis
and design, in which behavioral constraints are
embedded as equality constraints in optimiza-
tion model. It insures that stiffness matrix sin-
gularity is avoided. Arbitrary objective func-
tions, stress and displacement constraints
under multiple-loading conditions, and upper
and lower bounds on and linking of the design
variables can be easily handled. The formu-
lation is demonstrated on a number of exam-
ples of topology optimization of plate structur-
es loaded in plane under multiple loading con-
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ditions, and shown to be robust under a var-
lety of constraints,
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