• Title/Summary/Keyword: 평균 제곱근 편차

Search Result 65, Processing Time 0.027 seconds

Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors) (머신러닝 기법을 활용한 낙동강 중류 지역의 Chl-a 예측 알고리즘 비교 연구(수질인자 및 수량 중심으로))

  • Lee, Sang-Min;Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.277-288
    • /
    • 2020
  • In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm's ability to interpret seemed to be excellent.

Analysis on Propagation of Highway Traffic Flow Turbulence at Entrance-Ramp Junctions (난류현상을 이용한 고속도로 합류부의 영향권 세분화 연구)

  • Kim, Tae-Heon;Roh, Chang-Gyun;Kim, Won-Gil;Son, Bong-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • This study is aiming to separate highway entrance ramps from impact zones which are considered the characteristics and real traffic situations in each lane and section. The results of this study can be applied to Lane Control System and control the traffic flow for highway more efficiently. Based on earlier studies which analyzed impact zones in entrance-ramp junction using the standard deviation of speed, this study divides more segmentalized impact zones according to the degree of turbulences. As a result of this study, about 800m of intervals, from 500m of upper flow (1,2,3 lane) to 300m of lower flow(2, 3 lane), shows similar traffic characteristics influenced by entrance ramp directly.

Development of Gait Monitoring System Based on 3-axis Accelerometer and Foot Pressure Sensors (3축 가속도 센서와 족압 감지 시스템을 활용한 보행 모니터링 시스템 개발)

  • Ryu, In-Hwan;Lee, Sunwoo;Jeong, Hyungi;Byun, Kihoon;Kwon, Jang-Woo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.199-206
    • /
    • 2016
  • Most Koreans walk having their toes in or out, because of their sedentary lifestyles. In addition, using smartphone while walking makes having a desirable walking posture even more difficult. The goal of this study is to make a simple system which easily analyze and inform any person his or her personal walking habit. To discriminate gait patterns, we developed a gait monitoring system using a 3-axis accelerometer and a foot pressure monitoring system. The developed system, with an accelerometer and a few pressure sensors, can acquire subject's foot pressure and how tilted his or her torso is. We analyzed the relationship between type of gate and sensor data using this information. As the result of analysis, we could find out that statistical parameters like standard deviation and root mean square are good for discriminating among torso postures, and k-nearest neighbor algorithm is good at clustering gait patterns. The developed system is expected to be applicable to medical or athletic fields at a low price.

Development of Statistical/Probabilistic-Based Adaptive Thresholding Algorithm for Monitoring the Safety of the Structure (구조물의 안전성 모니터링을 위한 통계/확률기반 적응형 임계치 설정 알고리즘 개발)

  • Kim, Tae-Heon;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring(SHM) technique is ever-increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and are influenced by various external loads. Generally, the visual inspection and non-destructive test for an accessible point of structures are performed by experts. But nowadays, the system is required which is online measurement and detect risk elements automatically without blind spots on structures. In this study, in order to consider the response of non-linear structures, proposed a signal feature extraction and the adaptive threshold setting algorithm utilized to determine the abnormal behavior by using statistical methods such as control chart, root mean square deviation, generalized extremely distribution. And the performance of that was validated by using the acceleration response of structures during earthquakes measuring system of forced vibration tests and actual operation.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Mapping Precise Two-dimensional Surface Deformation on Kilauea Volcano, Hawaii using ALOS2 PALSAR2 Spotlight SAR Interferometry (ALOS-2 PALSAR-2 Spotlight 영상의 위성레이더 간섭기법을 활용한 킬라우에아 화산의 정밀 2차원 지표변위 매핑)

  • Hong, Seong-Jae;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1235-1249
    • /
    • 2019
  • Kilauea Volcano is one of the most active volcano in the world. In this study, we used the ALOS-2 PALSAR-2 satellite imagery to measure the surface deformation occurring near the summit of the Kilauea volcano from 2015 to 2017. In order to measure two-dimensional surface deformation, interferometric synthetic aperture radar (InSAR) and multiple aperture SAR interferometry (MAI) methods were performed using two interferometric pairs. To improve the precision of 2D measurement, we compared root-mean-squared deviation (RMSD) of the difference of measurement value as we change the effective antenna length and normalized squint value, which are factors that can affect the measurement performance of the MAI method. Through the compare, the values of the factors, which can measure deformation most precisely, were selected. After select optimal values of the factors, the RMSD values of the difference of the MAI measurement were decreased from 4.07 cm to 2.05 cm. In each interferograms, the maximum deformation in line-of-sight direction is -28.6 cm and -27.3 cm, respectively, and the maximum deformation in the along-track direction is 20.2 cm and 20.8 cm, in the opposite direction is -24.9 cm and -24.3 cm, respectively. After stacking the two interferograms, two-dimensional surface deformation mapping was performed, and a maximum surface deformation of approximately 30.4 cm was measured in the northwest direction. In addition, large deformation of more than 20 cm were measured in all directions. The measurement results show that the risk of eruption activity is increasing in Kilauea Volcano. The measurements of the surface deformation of Kilauea volcano from 2015 to 2017 are expected to be helpful for the study of the eruption activity of Kilauea volcano in the future.

Comparison of Multi-Satellite Sea Surface Temperatures and In-situ Temperatures from Ieodo Ocean Research Station (이어도 해양과학기지 관측 수온과 위성 해수면온도 합성장 자료와의 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Choi, Do-Young;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.613-623
    • /
    • 2019
  • Over the past decades, daily sea surface temperature (SST) composite data have been produced using periodically and extensively observed satellite SST data, and have been used for a variety of purposes, including climate change monitoring and oceanic and atmospheric forecasting. In this study, we evaluated the accuracy and analyzed the error characteristic of the SST composite data in the sea around the Korean Peninsula for optimal utilization in the regional seas. We evaluated the four types of multi-satellite SST composite data including OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) SST, and MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature) collected from January 2016 to December 2016 by using in-situ temperature data measured from the Ieodo Ocean Research Station (IORS). Each SST composite data showed biases of the minimum of 0.12℃ (OISST) and the maximum of 0.55℃ (MURSST) and root mean square errors (RMSE) of the minimum of 0.77℃ (CMC SST) and the maximum of 0.96℃ (MURSST) for the in-situ temperature measurements from the IORS. Inter-comparison between the SST composite fields exhibited biases of -0.38-0.38℃ and RMSE of 0.55-0.82℃. The OSTIA and CMC SST data showed the smallest error while the OISST and MURSST data showed the most obvious error. The results of comparing time series by extracting the SST data at the closest point to the IORS showed that there was an apparent seasonal variation not only in the in-situ temperature from the IORS but also in all the SST composite data. In spring, however, SST composite data tended to be overestimated compared to the in-situ temperature observed from the IORS.

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific (북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성)

  • Kim, Hee-Young;Park, Kyung-Ae;Woo, Hye-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.721-732
    • /
    • 2016
  • The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.