DOI QR코드

DOI QR Code

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific

북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성

  • Kim, Hee-Young (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education / Research Institute of Oceanography / Center for Educational Research, Seoul National University) ;
  • Woo, Hye-Jin (Department of Science Education, Seoul National University)
  • 김희영 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소/교육종합연구원) ;
  • 우혜진 (서울대학교 과학교육과)
  • Received : 2016.12.22
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

2012년 7월부터 2016년 8월까지 GCOM-W1/AMSR2 마이크로파 센서 자료와 해양 현장수온 관측 자료 사이에서 획득된 총 162,264개의 일치점 자료를 활용하여 북서태평양 해역에서의 마이크로파 해수면온도 정확도를 검증하고 오차 특성을 분석하였다. AMSR2 해수면온도는 실측 자료에 대해 $0.63^{\circ}C$의 평균제곱근오차와 $0.05^{\circ}C$의 편차를 보였다. 위성 해수면온도와 현장 관측 해수면온도의 차이는 풍속, 해수면 온도, 연안으로부터의 거리, 열전선 등 다양한 요인에 의해 발생되었다. AMSR2 해수면온도는 낮시간 동안 낮은 풍속(< 6 m/s)에서 실측 해수면온도보다 높게 산출되는 일변동(diurnal effect)에 의한 오차를 보였다. 또한 겨울철에 평균제곱근오차가 커지는 경향이 나타났는데, 이는 해상풍의 풍속이 커질수록 해수면의 방사율이 높아져 해수면온도 산출 시 양의 편차가 발생할 수 있으므로 겨울철의 강한 바람이 해수면온도 오차를 증가시킨 것으로 추정되었다. 이 외에도 저온에서 저하되는 민감도와 육지에 의한 자료오염 또한 AMSR2 해수면온도의 오차를 증가시키는 요인으로 작용할 수 있음을 확인하였다. 열전선에 따른 해수면온도 오차 특성을 분석한 결과 해수면온도의 공간 구배 크기가 커질수록, 열전선에 근접할수록 해수면온도 오차가 증가하였다. 본 연구는 북서태평양 해역 마이크로파 해수면온도의 정확도 검증 및 오차 특성 분석을 통해 향후 마이크로파 해수면온도를 활용하는 연구의 바탕을 마련하고자 하였으며, 연구 지역의 환경적 요인에 따라 발생할 수 있는 오차에 대한 분석이 선행되어야 보다 정확한 위성 관측 해수면온도를 얻을 수 있음을 제시하였다.

Keywords

References

  1. Donlon, C.J., N. Rayner, I. Robinson, D.J.S. Poulter, K.S. Casey, and J. Vazquez-Cuervo, 2007. The global ocean data assimilation experiment highresolution sea surface temperature pilot project, Bulletin of the American Meteorological Society, 88(8): 1197-1213. https://doi.org/10.1175/BAMS-88-8-1197
  2. Dong, S., S.T. Gille, J. Sprintall, and C. Gentemann, 2006. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean, Journal of Geophysical Research: Oceans, 111(C4).
  3. Emery, W.J., S. Castro, G.A. Wick, P. Schluessel, and C. Donlon, 2001. Estimating sea surface temperature from infrared satellite and in situ temperature data, Bulletin of the American Meteorological Society, 82(12): 2773. https://doi.org/10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
  4. Gentemann, C.L. and F.J. Wentz, 2001. Satellite microwave SST: Accuracy, comparisons to AVHRR and Reynolds SST, and measurement of diurnal thermocline variability, Proc. of Geoscience and Remote Sensing Symposium, IGARSS'01, IEEE 2001 International, vol. 1, pp. 246-248.
  5. Gentemann, C.L., F.J. Wentz, C.A. Mears, and D.K. Smith, 2004. In situ validation of tropical rainfall measuring mission microwave sea surface temperatures, Journal of Geophysical Research: Oceans, 109(C4).
  6. Gentemann, C.L., T. Meissner, and F.J. Wentz, 2010. Accuracy of satellite sea surface temperature at 7 and 11 GHz, IEEE Transactions on Geoscience and Remote Sensing, 48(3): 1009-1018. https://doi.org/10.1109/TGRS.2009.2030322
  7. Gentemann, C.L., 2014. Three way validation of MODIS and AMSR-E sea surface temperatures, Journal of Geophysical Research: Oceans, 119: 2583-2598. https://doi.org/10.1002/2013JC009716
  8. Gentemann, C.L. and K.A. Hilburn, 2015. In situ validation of sea surface temperatures from the GCOM-W1/AMSR2 RSS calibrated brightness temperatures, Journal of Geophysical Research: Oceans, 120(5): 3567-3585. https://doi.org/10.1002/2014JC010574
  9. Hihara, T., M. Kubota, and A. Okuro, 2015. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products, Remote Sensing of Environment, 164: 170-178. https://doi.org/10.1016/j.rse.2015.04.005
  10. Hollinger, J.P. and R.C. Lo, 1984. Low Frequency Microwave Radiometer for N-ROSS, Proc. of Technical Symposium East, International Society for Optics and Photonics, pp. 199-207.
  11. Mizuno, K. and W.B. White, 1983. Annual and interannual variability in the Kuroshio current system, Journal of physical oceanography, 13(10): 1847-1867. https://doi.org/10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2
  12. O'Carroll, A.G., J.G. Watts, L.A. Horrocks, R.W. Saunders, and N.A. Rayner, 2006. Validation of the AATSR meteo product sea surface temperature, Journal of Atmospheric and Oceanic Technology, 23(5): 711-726. https://doi.org/10.1175/JTECH1876.1
  13. Park, K.A., F. Sakaida, and H. Kawamura, 2008. Oceanic skin-bulk temperature difference through the comparison of satellite-observed sea surface temperature and in-situ measurements, Korean Journal of Remote Sensing, 24(4): 273-287 (in Korean with Enlish abstract). https://doi.org/10.7780/kjrs.2008.24.4.273
  14. Park, K.A., E.Y. Lee, S.R. Chung, E.H. Sohn, 2011. Accuracy assessment of sea surface temperature from NOAA/AVHRR data in the seas around Korea and error characteristics, Korean Journal of Remote Sensing, 27(6): 663-675. https://doi.org/10.7780/kjrs.2011.27.6.663
  15. Park, K.A., H.J. Woo, E.Y. Lee, S.W. Hong, K.L. Kim, 2013. Validation of significant wave height from satellite altimeter in the seas around Korea and error characteristics, Korean Journal of Remote Sensing, 29(6): 631-644. https://doi.org/10.7780/kjrs.2013.29.6.6
  16. Ricciardulli, L. and F.J. Wentz, 2004. Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM, Journal of Geophysical Research: Oceans, 109(C12).
  17. Stammer, D., F.J. Wentz, and C. Gentemann, 2003. Validation of microwave sea surface temperature measurements for climate purposes, Journal of Climate, 16(1): 73-87. https://doi.org/10.1175/1520-0442(2003)016<0073:VOMSST>2.0.CO;2
  18. Stogryn, A., 1967. The apparent temperature of the sea at microwave frequencies, IEEE Transactions on Antennas and Propagation, 15(2): 278-286. https://doi.org/10.1109/TAP.1967.1138900
  19. Tomita, H., Y. Kawai, M.F. Cronin, T. Hihara, M. Kubota, 2015. Validation of AMSR2 Sea Surface Wind and Temperature over the Kuroshio Extension Region, SOLA, 11(0): 43-47. https://doi.org/10.2151/sola.2015-010
  20. Vazquez-Cuervo, J., E.M. Armstrong, and A. Harris, 2004. The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures, Journal of Climate, 17(20): 3921-3933. https://doi.org/10.1175/1520-0442(2004)017<3921:TEOAAC>2.0.CO;2
  21. Wentz. F.J., 1983. A model function for ocean microwave brightness temperature, Journal of Geophysical Research: Oceans, 88(C3): 1892-1908. https://doi.org/10.1029/JC088iC03p01892
  22. Wentz, F.J. and T. Meissner, 2007. Supplement 1 Algorithm Theoretical Basis Document for AMSR-E Ocena Algorithm, Santa Rosa, CA: Remote Sensing Systems.
  23. Yasuda, I., 2003. Hydrographic structure and variability in the Kuroshio-Oyashio transition area, Journal of Oceanography, 59(4): 389-402. https://doi.org/10.1023/A:1025580313836
  24. Yoshimori, K., K. Itoh, and Y. Ichioka, 1994. Thermal radiative and reflective characteristics of a windroughened water surface, JOSA A, 11(6): 1886-1893. https://doi.org/10.1364/JOSAA.11.001886

Cited by

  1. Validation of Satellite Sea Surface Temperatures and Long-Term Trends in Korean Coastal Regions over Past Decades (1982-2018) vol.12, pp.22, 2016, https://doi.org/10.3390/rs12223742