DOI QR코드

DOI QR Code

The Sensitivity Analysis according to Observed Frequency of Daily Composite Insolation based on COMS

관측 빈도에 따른 COMS 기반의 일 평균 일사량 산출의 민감도 분석

  • Kim, Honghee (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Lee, Kyeong-Sang (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Seo, Minji (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Choi, Sungwon (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Sung, Noh-Hun (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Lee, Darae (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Jin, Donghyun (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Kwon, Chaeyoung (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University) ;
  • Huh, Morang (P.K SYSTEM Inc.) ;
  • Han, Kyung-Soo (Division of Earth Environmental System Science(Major of Spatial Information Engineering), Pukyong National University)
  • 김홍희 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 이경상 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 서민지 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 최성원 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 성노훈 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 이다래 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 진동현 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 권채영 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 허모랑 ((주)피케이시스템) ;
  • 한경수 (부경대학교 지구환경시스템과학부 공간정보시스템공학과)
  • Received : 2016.12.21
  • Accepted : 2016.12.28
  • Published : 2016.12.31

Abstract

Insolation is an major indicator variable that can serve as an energy source in earth system. It is important to monitor insolation content using remote sensing to evaluate the potential of solar energy. In this study, we performed sensitivity analysis of observed frequency on daily composite insolation over the Korean peninsula. We estimated INS through the channel data of Communication, Ocean and Meteorological Satellite (COMS) and Cloud Mask which have temporal resolution of 1 and 3 hours. We performed Hemispherical Integration by spatial resolution for meaning whole sky. And we performed daily composite insolation. And then we compared the accuracy of estimated COMS insolation data with pyranometer data from 37 points. As a result, there was no great sensitivity in the daily composite INS by observed frequency of satellite that accuracy of the calculated insolation at 1 hour interval was $28.6401W/m^2$ and 3 hours interval was $30.4960W/m^2$. However, there was a great difference in the space distribution of two other INS data by observed frequency of clouds. So, we performed sensitivity analysis with observed frequency of clouds and distinction between the two other INS data. Consequently, there was showed sensitivity up to $19.4392W/m^2$.

일사량은 지구 내 시스템의 에너지원으로 작용하는 중요한 지표변수로써, 원격탐사를 통해 모니터링 하는 것은 태양 에너지의 잠재량을 평가할 수 있어 매우 중요하다. 따라서 본 논문에서는 한반도에서 관측 빈도에 따른 일 평균 일사량 산출의 민감도를 분석하고자 한다. COMS의 채널 자료 및 구름탐지 분석자료, 구름에 의한 일사량의 감쇠 정도를 이용하여 시간 해상도가 1시간과 3시간 간격의 자료를 이용하여 일사량을 산출하였다. 전천을 의미하는 공간적 범위만큼 Hemispherical Integration를 실시하였고, 각 일사량을 일 평균하여 지상 37곳의 일사계 자료와 검증을 실시하였다. 그 결과, 1시간 간격의 자료를 이용하여 일평균한 일사량은 $28.6401W/m^2$의 정확도를, 3시간 간격의 자료를 이용하여 일 평균한 일사량은 $30.4960W/m^2$의 정확도를 보여, 일 평균 일사량은 위성의 관측 빈도에 큰 민감도를 보이지 않았다. 하지만 시간해상도가 다른 두 일사량은 공간적 분포에서 구름의 관측 빈도에 따라 큰 차이를 보였고, 구름의 관측 빈도와 두 일사량의 차이 간 민감도 분석을 실시한 결과 최대 $19.4392W/m^2$의 민감도를 보였다.

Keywords

References

  1. Baek, S.K., Y.J. Choi, C.Y. Chung, and C.H. Cho, 2006. The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia, Atmosphere, 16(3): 255-234 (in Korean with English abstract).
  2. Choi, W.S., A.R. Song, and Y.I. Kim, 2015. Solar Irradiance Estimation in Korea by Using Modified Heliosat-II Method and COMS-MI Imagery, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(5): 463-472 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.5.463
  3. Kawamura, H., S. Tanahashi, and T. Takahashi, 1998. Estimation of insolation over the Pacific Ocean off the Sanriku Coast, Journal of Oceanography, 54: 457-464. https://doi.org/10.1007/BF02742448
  4. Liang, S., X. Li, and J. Wang, 2012. Advanced remote sensing: Terrestrial Information Extraction and Applications, Academic Press.
  5. National Meteorological Satellite Center, 2012. Insolation Algorithm Theoretical Basis Document, Korea Meteorological Administration, Korea.
  6. Tarpley, J.D., 1979. Estimating Incident Solar Radiation at the Surface from Geostationary Satellite Data, Journal of applied meteorology, 18: 1172-1181. https://doi.org/10.1175/1520-0450(1979)018<1172:EISRAT>2.0.CO;2
  7. Ushio, T., K. Sasashige, T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2009. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data, Journal of the Meteorological Society of Japan, 87(A): 137-151.
  8. Yeom, J.M., K.S. Han, and J.J. Kim, 2012. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data, Asia-Pacific Journal of Atmospheric Sciences, 48: 115-123 (in Korean with English abstract). https://doi.org/10.1007/s13143-012-0011-9
  9. Zarzalejo, L.F., J. Polo, L. Martin, L. Ramirez, and B. Espinar, 2009. A new statistical approach for deriving global solar radiation from satellite images, Solar Energy, 83(4): 480-484. https://doi.org/10.1016/j.solener.2008.09.006

Cited by

  1. 위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출 vol.34, pp.2, 2016, https://doi.org/10.7780/kjrs.2018.34.2.1.11
  2. 다목적실용위성 영상자료 활용 현황 vol.34, pp.6, 2016, https://doi.org/10.7780/kjrs.2018.34.6.3.1
  3. Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea vol.15, pp.9, 2016, https://doi.org/10.1088/1748-9326/ab9467