• Title/Summary/Keyword: GCOM-W1/AMSR2

Search Result 10, Processing Time 0.027 seconds

Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset (자료동화 토양수분 데이터를 활용한 동아시아지역 수동형 위성 토양수분 데이터 보정: SMOS (MIRAS), GCOM-W1 (AMSR2) 위성 및 GLDAS 데이터 활용)

  • Kim, Hyunglok;Kim, Seongkyun;Jeong, Jeahwan;Shin, Incheol;Shin, Jinho;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.132-147
    • /
    • 2016
  • In this study the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) sensor onboard the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation Mission-Water (GCOM-W1) based soil moisture retrievals were revised to obtain better accuracy of soil moisture and higher data acquisition rate over East Asia. These satellite-based soil moisture products are revised against a reference land model data set, called Global Land Data Assimilation System (GLDAS), using Cumulative Distribution Function (CDF) matching and regression approach. Since MIRAS sensor is perturbed by radio frequency interferences (RFI), the worst part of soil moisture retrieval, East Asia, constantly have been undergoing loss of data acquisition rate. To overcome this limitation, the threshold of RFI, DQX, and composite days were suggested to increase data acquisition rate while maintaining appropriate data quality through comparison of land surface model data set. The revised MIRAS and AMSR2 products were compared with in-situ soil moisture and land model data set. The results showed that the revising process increased correlation coefficient values of SMOS and AMSR2 averagely 27% 11% and decreased the root mean square deviation (RMSD) decreased 61% and 57% as compared to in-situ data set. In addition, when the revised products' correlation coefficient values are calculated with model data set, about 80% and 90% of pixels' correlation coefficients of SMOS and AMSR2 increased and all pixels' RMSD decreased. Through our CDF-based revising processes, we propose the way of mutual supplementation of MIRAS and AMSR2 soil moisture retrievals.

Evaluation of satellite-based soil moisture retrieval over the korean peninsula : using AMSR2 LPRM algorithm and ground measurement data (위성기반 토양수분 자료의 한반도 지역 적용성 평가: AMSR2 LPRM 알고리즘과 지점관측 자료를 이용하여)

  • Kim, Seongkyun;Kim, Hyunglok;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.423-429
    • /
    • 2016
  • This study aims at assessing the quality of the Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products onboard GCOM-W1 satellite based on Land Parameter Retrieval Model (LPRM) soil moisture retrieval algorithm with field measurements in South Korea from March to September, 2014. Results of mean bias and root mean square error between AMSR2 LPRM soil moisture products (X-band) and ground measurements showed reasonable value of 0.03 and 0.16. Also, the maximum of the Pearson correlation coefficients was 0.67, which showed good agreement in terms of temporal variability with ground measurements. By comparing AMSR2 soil moisture with in-situ measurement according to the overpass time and band frequency, X-band products on the ascending time outperformed than those of C1-band and C2-band. Furthermore, this study offers an insight into the applicability of the AMSR2 soil moisture products for monitoring various natural disasters at a large scale such as drought and flood.

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific (북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성)

  • Kim, Hee-Young;Park, Kyung-Ae;Woo, Hye-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.721-732
    • /
    • 2016
  • The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula (한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.555-567
    • /
    • 2018
  • In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

Comparison the Variability of SMOS L-band and AMSR2 C-band Soil Moisture Data (SMOS L-band와 AMSR2 C-band 토양수분 자료의 변화특성 비교)

  • Kim, Myojeong;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.513-513
    • /
    • 2015
  • 정확한 유역 토양수분 정보는 홍수 예측의 정도를 크게 향상시키므로 공간 토양수분 정보를 획득하기 위하여 선진국에서는 위성 영상을 활용하여 토양수분을 관측하고 있다. 본 연구에서는 유럽우주기구 ESA(European Space Agency)에서 운영하는 SMOS(Soil Moisture and Ocean Salinity) L-band 토양수분 관측치와 일본 우주항공 연구개발 기구 JAXA(Japan Aerospace Exploration Agency)에서 운영하는 GCOM-W1 위성의 AMSR2(Advanced Microwave Scanning Radiometer 2) C-band 토양수분 자료를 비교 분석하였다. SMOS 토양수분, AMSR2 토양수분을 기상청 농업관측관서의 지상 관측 토양수분 자료와 비교한 그래프는 다음과 같다(Fig. 1). 상대적으로 깊은 관측심으로 인한 장점을 가짐에도 불구하고 RFI로 인한 L-band 토양수분 자료의 시공간 관측율이 C-band 토양수분자료에 비하여 낮아 활용성이 낮다. AMSR2 자료는 여름철을 제외한 모든 계절에 과소 추정하는 단점을 보이며 실제적 활용을 위해 지상자료와의 편이보정 과정이 필수적이라 판단된다.

  • PDF

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Performance of conditional merging spatial interpolation technique combining AMSR2 soil moisture and In-situ soil moisture data (조건부 합성기법을 이용한 AMSR2 토양수분과 지상관측 토양수분의 공간보간 성능 평가)

  • Lee, Jaehyeon;Choi, Minha;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.141-141
    • /
    • 2016
  • 미계측 지역에서의 토양수분을 예측하기 위하여 조건부합성방법을 한반도에 적용하여 비교 분석하였다. 토양수분 자료는 농촌진흥청에서 제공하는 지상관측 자료와 GCOM-W1 위성의 Advanced Microwave Scanning Radiometer2 (AMSR2) 센서의 자료를 사용하였다. 위성관측 토양수분자료의 오차를 제거하기 위하여 지상관측자료에 정규화 하였고, 정규화된 위성관측 자료와 지상관측자료를 조건부합성 방법을 이용하여 합성하였다. 조건부 합성방법의 성능을 평가하기 위하여 leave-one-out 교차검증 방법을 사용하였고, 분석 결과 지상관측자료에 위성자료를 합성한 조건부합성방법이 지상관측자료만을 사용한 크리깅 방법에 비해 우세하게 나타났다. 또한 각 관측지점에서의 조건부합성 방법을 이용한 토양수분 예측 성능을 공간분포 시켜 지역적인 특성을 분석한 결과 관측소의 밀도와 지형적인 특성이 조건부합성방법의 성능에 영향을 미치는 것으로 나타났다. 본 연구의 결과는 원격탐사기법으로 관측된 토양수분 자료의 공간적인 특성을 고려하여 지상 관측 자료와 합성하는 것이 토양수분 공간보간성능을 향상 시킬 수 있다는 것을 의미한다.

  • PDF

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

River Flow Forecasting using Satellite-based Products and Machine Learning Technique over the Ungauged River Flow in Korean Peninsula, Imjin River: Using MODIS, ASCAT, and SDS dataset (위성 데이터 및 기계 학습 기법을 활용한 한반도 임진강 미계측 지역 유출량 예측: MODIS, ASCAT, SDS 데이터를 활용하여)

  • Choi, Min Ha;Kim, Hyung Lok;Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.159-159
    • /
    • 2016
  • 북한 지역에서 시작되어 한반도의 금문댐까지 연결되는 임진강은 북한지역의 유출량 미계측으로 인해 유출량 산출에 많은 어려움이 있어왔다. 본 연구에서는 위성 데이터를 활용하여 미계측 유역의 유출량을 추정 할 수 있는 기법을 제시하였다. Satellite-derived Flow Signal (SDF)는 위성 기반 특정 지역의 유출 정보를 제공하며, JAXA의 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2(AMSR2) 센서에서 산출된다. 본 연구에서는 SDS 뿐 아니라 유출에 크게 관련이 있는 지표 토양수분 데이터와 식생인자를 임진강 유출 값을 예측하기 위한 입력 값으로 활용하였다. 토양수분 데이터는 Metop-A 위성에 탑재된 Advanced Scatterometer(ASCAT) 센서에서 산출되는 데이터를 활용하였으며, 식생데이터는 Aqua 위성에 탑재된 Moderate Resolution Imaging Spectroradiometer(MODIS) 센서에서 측정되는 Normalized Difference Vegetation Index(NDVI) 데이터를 활용하였다. 추가적으로 SDS, 토양수분, NDVI 데이터는 다양한 lag time으로 약 150여개의 입력데이터로 세분화되었다. 150개의 방대한 입력인자는 Partial Mutual Information(PMI) 방법을 통해 소수 중요 인자들로 간추려져 기계 학습 입력인자로 활용되었다. 기계학습에 있어서는 Support Vector Machine(SVM), Artificial Neural Network (ANN) 기법을 활용하였다. SVM, ANN을 통해 모델화된 유출데이터는 금문댐 유출데이터와 비교/분석되었다. SVM 기법 기반의 유출량은 실제 유출량과 0.73의 상관계수를 보여주었고, ANN 기법 기반의 유출량은 0.66의 상관계수를 결과를 나타내었다. 하지만 SVM 기반 유출데이터는 과소 산정 되는 경향을 보였으며, ANN 기법 기반의 유출량은 과대산정되는 결과가 산출되는 한계점이 있음을 파악할 수 있었다.

  • PDF

Evaluation of the snow simulations from CLM using satellite-based observations (위성 관측 자료를 활용한 지면모형(CLM)의 적설 모의 평가)

  • Seo, Jungho;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.332-332
    • /
    • 2022
  • 적설은 지구 기후시스템과 수문순환 과정에서 중요한 역할을 하고 있으며, 겨울철의 적설은 봄철에 녹으면서 식생과 수자원 제공에 큰 영향을 주는 인자로 알려져 있다. 동아시아가 위치한 북반구는 적설량의 90%가 관찰되고 토지의 약 42%가 긴 시간동안 눈으로 덮여 있어 지표 에너지와 물 균형에 영향을 주고, 특히 수자원 관리를 위한 유출이나 토양수분과 같은 수문 인자에 큰 영향을 미친다. 따라서 적설을 정확하게 예측하는 것은 수자원 관리에 있어 매우 중요한 일이다. 한편, 이러한 수문 순환을 정확히 예측하기 위해 수문 분야에서는 지면모형(Land Surface Model, LSM)을 많이 사용하고 있다. 지면모형은 지표면과 대기 사이의 상호작용을 모의하기 위해 개발되었고, 에너지, 수증기, 이산화탄소 등의 다양한 인자들의 교환에 대하여 해석하며, 토양수분, 유출량 등의 수자원 분야의 주요 인자들을 산출하여 수자원 관리에 적극적으로 활용되고 있다. 이에 본 연구에서는 National Center for Atmospheric Research(NCAR)에서 개발한 Community Land Model(CLM)을 사용하여 2001년부터 2016년까지 25km의 공간해상도로 동아시아 지역의 적설 모의를 평가하였다. CLM의 적설 모의 평가 인자는 Snow depth, Snow water equivalent의 2가지 인자를 대상으로 수행하였고, 모의 성능 평가를 위한 관측 자료로 NASA Aqua와 JAXA GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer(AMSR) 센서에서 제공하는 위성 관측 자료와 Defense Meteorological Satellite Program(DMSP) 위성의 Special Sensor Microwave/Imager(SSM/I) 센서와 Nimbus-7 위성의 Scanning Multichannel Microwave Radiometer(SMMR) 센서에서 제공하는 위성 관측 자료를 기반으로 지상 기상 관측소 자료와 조합하여 재생성한 European Space Agency Global Snow Monitoring for Climate Research (ESA GlobSnow)의 자료를 사용하였다. 그 결과 CLM의 적설 모의는 과대 추정하는 것을 알 수 있었으며, 본 연구의 결과는 동아시아 적설 모의 개선을 위해 자료 동화를 사용하는 후속 연구의 기초자료로 사용할 수 있다.

  • PDF