• Title/Summary/Keyword: 파동

Search Result 1,101, Processing Time 0.026 seconds

MEASUREMENT OF PULPAL BLOOD FLOW USING A LASER DOPPLER FLOWMETER (Laser Doppler flowmeter를 이용한 치수혈류 측정)

  • Ban, Tae-Whan;Lee, Jae-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.560-569
    • /
    • 1999
  • Blood supply rather than nerve supply implies pulp vitality. To evaluate pulp vitality clinically, electric pulp test and thermal test which are based on sensory nerve response have been used in addition to many auxiliary data such as past dental history, visual inspection, radiographic examination, percussion, palpation and transillumination test. However, reactivity of the nerves to the stimulation is not synonymous with normalcy. Therefore measurement of pulpal blood flow using a laser Doppler flowmeter became a new trial to test the pulp vitality. The purpose of the present study was to evaluate normal pulpal blood flow level of maxillary teeth in adult to provide a guideline in determining the vitality of dental pulp. Pulpal blood flow was measured in maxillary central and lateral incisors, canines, first and second premolars and first molars of seventy nine adults of 22 - 30 years old using a laser Doppler flowmeter (PeriFlux 4001, Perimed Co., Stockholm, Sweden, 780 nm infrared laser, 1mW). For directly-made splints, silicone rubber impressions were taken directly from the mouth. For indirectly-made splints, alginate impressions were taken from the mouth and stone cast were made. After making depressions on the buccal surfaces of the cast teeth to indicate the hole positions, second impressions with vinyl polysyloxane putty were taken from the cast. Holes for the laser probes were made at the putty impressions 4mm above the gingival level. Laser probe (PF416 dental probe, 1.5mm) was inserted in the prepared hole and the splint was set in the mouth. After 10 minutes of patient relaxing, pulpal blood flow was recorded for 5 minutes on each tooth. The recorded flow was saved in the computer and calculated with a software 'Perisoft' version 5.1. Pulpal blood flow was also recorded in six teeth of five individuals with no response to electric pulp test and cold test, with periapical radiolucency, or with history of root canal treatment to compare with nonvital teeth. The difference between the mean flow values of each group of teeth were analyzed using one-way ANOVA and Duncan's Multiple Range test. The results were as follows: 1. The average pulpal blood flow values of all the tested teeth of each location were between 9 - 16 Perfusion Unit. Pulpal blood flow value was highest in maxillary lateral incisors, followed by first premolars, second premolars, canines, central incisors, and then first molars (p<0.01). 2. In six anterior teeth, indirectly-made splint group showed higher pulpal blood flow values than directly-made splint group (p<0.01). In posterior teeth, however, there was no significant flow value difference between directly-made splint group and indirectly-made splint one (p>0.05). 3. Teeth with vital pulps showed higher signal values than teeth with nonvital pulps (p<0.01), and the flow photographs showed heartbeat-synchronous fluctuations and vasomotions, while those were absent in non vital tooth.

  • PDF

Possibility of Soil Solarization in Korea (한국(韓國)에 있어서 태양열(太陽熱)을 이용(利用)한 토양소독(土壤消毒)의 가능성(可能性))

  • Ki, Kye-Un;Kim, Ki-Chung
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.107-114
    • /
    • 1985
  • This experiment was performed to see the possibility if soil-borne disease in green house can be controlled by soil solarization in Korea. Thermal death profiles of propagules of some soil-borne fungi, Fusarium oxysporum f. lycopersici, Fusarium oxysporum f. niveum, Rhizoctonia salani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Pythium debaryanum, were obtained under the conditions in water-suspension and in soil. Except Pythium debaryanum, all the fungal units in water-suspension that were colonized on barley grains lost a viability within 7 days in water bath at $45^{\circ}C$. When the soil in test tubes in which barley grains infected with the fungi were also buried all the fungi tested including Pythium debaryanum were completely killed within 7 days in water bath at $45^{\circ}C$. From July to August in Korea, soil temperature at depth of 5cm and 15cm within tunnel in plastic house reached $38^{\circ}C\;to\;57^{\circ}C$ and $40^{\circ}C\;to\;47^{\circ}\C$, in 1982 and 1983 respectively. Even at 15cm depth, soil temperature were kept over $43^{\circ}C$ for 12 hours a day. Adiabatic material set under ground or under mulching with the transparent polyethylene-film on the soil surface had a boostering effect for higher soil-temperature and longer duration. Fungi buried in adiabatic block of the soil in plastic house were completely killed at 15cm depth 14 days after, and at 20cm depth 21 days after soil solarization. The exposure of the pathogens to fluctuating temperature was much more effective than to constant. From the above results, soil-borne diseases may be effectively controlled by soil solarization in the closed plastic house in hot summer season in Korea.

  • PDF

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

Development and Application of Scientific Model Co-construction Program about Image Formation by Convex Lens (볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용)

  • Park, Jeongwoo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.203-212
    • /
    • 2017
  • A scientific model refers to a conceptual system that can describe, explain, and predict a particular physical phenomenon. The co-construction of the scientific model is attracting attention as a new teaching and learning strategy in the field of science education and various studies. The evaluation and modification of models compared with the predicted models of data from the real world is the core of modeling strategy. However, there were only a limited data provided by the teacher in many studies of modeling comparing the students' predictions of their own models. Most of the students were not given the opportunity to evaluate the suitability of the model with the data in the real world. The purpose of this study was to develop a scientific model co-construction program that can evaluate the model by directly comparing the predicted models with the observed data from the real world. Through a collaborative discussion between teachers and researchers for 6 months, a 5-session scientific model co-construction program on the subject 'image formation by convex lenses' for second grade middle school students was developed. Eighty (80) students in 3 classes and a science teacher with 20 years of service from general public co-educational middle school in Gyeonggi-do participated in this 2-week program. After the class, students were asked about the helpfulness and difficulty of the class, and whether they would like to recommend this class to a friend. After the class, 95.8% of the students constructed the scientific model more than the model using the construction rule. Students had difficulties to identify principles or understand their friends, but the result showed that they could understand through model evaluation experiment. 92.5% of the students said that they would be more than willing to recommend this program to their friends. It is expected that the developed program will be applied to the school and contribute to the improvement of students' modeling ability and co-construction ability.

Changes and Comparative Analysis of Job-offer, Job-search and Small and Medium-sized Companies Before and after the Corona Era (코로나 시대 이전과 이후의 구인·구직 및 중소기업의 변화 및 비교분석)

  • Kim, Youn Su;Chang, In Hong;Song, Kwang Yoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • On November 17, 2019, an infectious disease with symptoms of pneumonia, called the Wuhan virus at the time, occurred in Wuhan, China. Since then, the name has been changed to COVID-19, and the virus has spread all over the world, and the WHO has declared the highest warning level for infectious diseases, "Pandemic". The coronavirus has also caused great confusion in South Korea. This resulted in large infected people.The first confirmed cases occurred on January 20, 2020, and the number of infected patients is steadily increasing after experiencing several waves, and many corona confirmed cases are also occurring in 2021 after the year. As the whole world enters a pandemic, walls are created between people and people, companies and businesses, and countries and countries, and all growth stops or declines, including human relationships, domestic companies and industries, and foreign industries. As a result, society in general is experiencing a lot of stagnation. Among them, small and medium-sized enterprises (SMEs), which are the basis of all growth in Korea, and youth who are trying to contribute to the national development by entering society, are struggling to find jobs. Even before the coronavirus outbreak, the difficulty of job hunting and the prospect of small and medium-sized businesses were not very good. In this situation, as the country's overall economic situation is poor, the vitality of SMEs has decreased a lot, the prospects are not good, so jobs are reduced, and there are many difficulties due to reluctance to hire new employees. In this study, with 2019 before the corona era and 2020 after the corona era, we compare SMEs before and after the corona era and overall job search and job search activities through average difference analysis, and whether they are affecting through correlation analysis. Through this, it suggests a direction to increase job search through corporate and government policies after raising the prospects of SMEs first.

Influence of Detailed Structure and Curvature of Woven Fabric on the Luminescence Effect of Wearable Optical Fiber Fabric (직물의 세부 구조 및 굴곡이 웨어러블 광섬유의 발광 효과에 미치는 영향)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Kwak, Hwy-Kuen;Oh, Yun-Jung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • The two main requirements of wearable optical fiber fabrics are that they must presuppose a high degree of flexibility and they must maintain the luminance effect in both flat and bent conformations. Therefore, woven optical fiber fabrics that satisfy the above conditions were developed by both weaving and by using computer embroidery. First, we measured the brightness of the wearable optical fiber fabric in the flat state at a total of 10 measurement points at intervals of 1 cm. Second, the wearable optical fiber fabric was placed horizontally on the forearm, where three-dimensional bending occurs, and the luminance values were recorded at the same 10 measurement points. For the woven fabric in the flat state, the maximum, minimum, average, and standard deviation luminance values were $5.23cd/m^2$, $2.74cd/m^2$, $3.56cd/m^2$, and $1.11cd/m^2$, respectively. The corresponding luminance values from the bent forearm were $7.92cd/m^2$ (maximum), $2.37cd/m^2$ (minimum), $4.42cd/m^2$ (average), and $2.16cd/m^2$ (standard deviation). In the case of the computer-embroidered fabric, the maximum, minimum, average, and standard deviation luminance values in the flat state were $7.56cd/m^2$, $3.84cd/m^2$, $5.13cd/m^2$, and $1.04cd/m^2$, respectively, and in the bent forearm state were $9.6cd/m^2$, $3.63cd/m^2$, $6.13cd/m^2$, and $2.26cd/m^2$, respectively. Therefore, the computer-embroidered fabric exhibited a higher luminous effect than the woven fabric because the detailed structure reduced light-loss due to the backside fabric. In both types of wearable optical fiber fabric the luminance at the forearm was 124% and 119%, respectively, and the light emitting effect of the optical fiber fabric was maintained even when bent by the human body. This is consistent with the principle of Huygens, which defines the wave theory of light, and also the Huygens-Fresnel-Kirchhoff principle, which states that the intensity of light increases according to the magnitude of the angle of propagation of the light wavefront (${\theta}$).

Effects of vocal aerobic treatment on voice improvement in patients with voice disorders (성대에어로빅치료법이 음성장애환자의 음성개선에 미치는 효과)

  • Park, Jun-Hee;Yoo, Jae-Yeon;Lee, Ha-Na
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.69-76
    • /
    • 2019
  • This study aimed to investigate the effects of vocal aerobic treatment (VAT) on the improvement of voice in patients with voice disorders. Twenty patients (13 males, 7 females) were diagnosed with voice disorders on the basis of videostroboscopy and voice evaluations. Acoustic evaluation was performed with the Multidimensional voice program (MDVP) and Voice Range Profile (VRP) of Computerized Speech Lab (CSL), and aerodynamic evaluation with PAS (Phonatory Aerodynamic System). The changes in F0, Jitter, Shimmer, and NHR before and after treatment were measured by MDVP. F0 range and Energy range were measured with VRP before and after treatment, and the changes in Expiratory Volume (FVC), Phonation Time (PHOT), Mean Expiratory Airflow (MEAF), Mean Peak Air Pressure (MPAP), and Aerodynamic Efficiency (AEFF) with PAS. Videostroboscopy was performed to evaluate the regularity, symmetry, mucosal wave, and amplitude changes of both vocal cords before and after treatment. Voice therapy was performed once a week for each patient using the VAT program in a holistic voice therapy approach. The average number of treatments per patient was 6.5. In the MDVP, Jitter, Shimmer, and NHR showed statistically significant decreases (p < .001, p < .01, p < .05). VRP results showed that Hz and semitones in the frequency range improved significantly after treatment (p < .01, p < .05), as did PAS, FVC, and PHOT (p < .01, p < .001). The results for videostroboscopy, functional voice disorder, laryngopharyngeal reflux, and benign vocal fold lesions were normal. Thus, the VAT program was found to be effective in improving the acoustic and aerodynamic aspects of the voice of patients with voice disorders. In future studies, the effect of VAT on the same group of voice disorders should be studied. It is also necessary to investigate subjective voice improvement and objective voice improvement. Furthermore, it is necessary to examine the effects of VAT in professional voice users.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Reevaluating the National Museum of Korea's Evacuation and Exhibition Projects in the 1950s (6.25 전쟁기 국립박물관 소장품의 국외반출 과정에 대한 신고찰)

  • KIM Hyunjung
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.198-216
    • /
    • 2024
  • This article reevaluates the National Museum of Korea's pivotal actions during the Korean War in the 1950s and its aftermath. It argues that the evacuation of the museum's collection to Busan and the subsequent exhibition "Masterpieces of Korean Art" in the United States in 1957 were not isolated events, but rather interconnected facets of a larger narrative shaping the museum's trajectory. With newly discovered archival evidence, this study unravels the intricate relationship between these episodes, revealing how the initial Busan evacuation evolved into a strategic U.S.-led touring exhibition. Traditionally, the Busan evacuation has been understood solely as a four-stage relocation of the museum's collections between December 1950 and May 1951. However, this overlooks the broader context, particularly the subsequent U.S. journey. Driven by the war's initial retreat of the war, the Busan evacuation served as a stepping stone for evacuation to Honolulu Museum of Art. The path of evacuation took an unexpected turn when the government redirected the collections to the Honolulu Museum of Art. Initially conceived as a storage solution, public opposition led to a remarkable transformation: the U.S. exhibition. To address public concerns, the evacuation plan was canceled. This shift transformed the planned introduction into a full-fledged traveling exhibition. Subsequently approved by the National Assembly, the U.S. Department of State spearheaded development of the exhibition, marking a distinct strategic cultural policy shift for Korea. Therefore, the Busan evacuation, initially envisioned as a temporary introduction to the U.S., ultimately metamorphosed into a multi-stage U.S. touring exhibition orchestrated by the U.S. Department of State. This reframed narrative sheds new light on the museum's crucial role in navigating a complex postwar landscape, revealing the intricate interplay between cultural preservation, public diplomacy, and strategic national interests.

Review on the impact of Arctic Amplification on winter cold surges over east Asia (북극 온난화 증폭이 겨울철 동아시아 한파 발생에 미치는 영향 고찰)

  • Seong-Joong Kim;Jeong-Hun Kim;Sang-Yoon Jun;Maeng-Ki Kim;Solji Lee
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.1-23
    • /
    • 2021
  • In response to the increase in atmospheric carbon dioxide and greenhouse gases, the global mean temperature is rising rapidly. In particular, the warming of the Arctic is two to three times faster than the rest. Associated with the rapid Arctic warming, the sea ice shows decreasing trends in all seasons. The faster Arctic warming is due to ice-albedo feedback by the presence of snow and ice in polar regions, which have higher reflectivity than the ocean, the bare land, or vegetation, higher long-wave heat loss to space than lower latitudes by lower surface temperature in the Arctic than lower latitudes, different stability of atmosphere between the Arctic and lower latitudes, where low stability leads to larger heat losses to atmosphere from surface by larger latent heat fluxes than the Arctic, where high stability, especially in winter, prohibits losing heat to atmosphere, increase in clouds and water vapor in the Arctic atmosphere that subsequently act as green house gases, and finally due to the increase in sensible heat fluxes from low latitudes to the Arctic via lower troposphere. In contrast to the rapid Arctic warming, in midlatitudes, especially in eastern Asia and eastern North America, cold air outbreaks occur more frequently and last longer in recent decades. Two pathways have been suggested to link the Arctic warming to cold air outbreaks over midlatitudes. The first is through troposphere in synoptic-scales by enhancing the Siberian high via a development of Rossby wave trains initiated from the Arctic, especially the Barents-Kara Seas. The second is via stratosphere by activating planetary waves to stratosphere and beyond, that leads to warming in the Arctic stratosphere and increase in geopotential height that subsequently weakens the polar vortex and results in cold air outbreaks in midlatitudes for several months. There exists lags between the Arctic warming and cold events in midlatitudes. Thus, understanding chain reactions from the Arctic warming to midlatitude cooling could help improve a predictability of seasonal winter weather in midlatitudes. This study reviews the results on the Arctic warming and its connection to midlatitudes and examines the trends in surface temperature and the Arctic sea ice.