DOI QR코드

DOI QR Code

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula

다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교

  • Choi, Soon-Young (Dept. of Geoenvironment Sciences, Kongju National University) ;
  • Kim, Hyung-Rae (Dokdo Research center, East Sea Branch, Korea Ocean Research and Development Institute) ;
  • Kim, Chang-Hwan (Dept. of Geoenvironment Sciences, Kongju National University) ;
  • Park, Chan-Hong (East Sea Branch, Korea Ocean Research and Development Institute) ;
  • Suh, Man-Chul (Dokdo Research center, East Sea Branch, Korea Ocean Research and Development Institute)
  • 최순영 (한국해양연구원 동해분원 독도전문연구센터) ;
  • 김형래 (공주대학교 지질환경과학과) ;
  • 김창환 (한국해양연구원 동해분원 독도전문연구센터) ;
  • 박찬홍 (한국해양연구원 동해분원) ;
  • 서만철 (공주대학교 지질환경과학과)
  • Received : 2011.08.23
  • Accepted : 2011.12.20
  • Published : 2011.12.28

Abstract

We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

본 연구는 지형자료와 Free-air 중력이상을 이용하여 한반도의 모호면 심도 및 지각두께를 계산하였다. Airy-Heiskanen 지각평형 가설에 근거한 Free-air 중력이상에 포함된 지형중력과 연관성 있는 성분들을 파동수상관분석으로 추출하고 이로부터 보상이 이루어진 상태의 중력효과를 계산하였다. 계산된 결과로부터 반복법을 통한 역산을 이용하여 지각과 맨틀의 경계면인 모호면 심도를 도출하였고 역산 시 기존에 연구된 지진파에 의한 20개의 모호면 심도를 활용하여 포텐셜 필드에서 나타날 수 있는 비유일성의 가능성을 최소화하였다. 최종적으로 모호면 심도와 고도 자료를 더하여 한반도 지각두께를 도출하였으며 한반도 평균지각두께는 32.15 km, 표준편차 3.12 km를 나타내었다. 이 연구에서 구한 남한지역의 모호면과 같은 지역의 타 논문결과들과 비교하였을 때 평균 모호면 심도는 각각 31.08 km, 31.96 km, 33.02 km을 나타내고 표준편차는 1.94 km, 1.62 km, 1.77 km을 나타냄으로 각 연구결과의 통계치는 거의 일치하는 것으로 나타났고 모호면 굴곡 역시 공통적으로 태백산맥과 소백산맥을 따라 모호면이 깊어지고 경상분지는 얕아짐을 확인하였다. 또한 지각 내 중력 이상체의 분포에 대한 정보를 포함하고 있는 지형과 비상관된 Freeair 중력이상을 가지고 지열류량분포와 비교하였다. 저주파성분의 지형과 비상관된 Free-air 중력이상과 지열류량분포를 상관 비교한 결과 높은 양의 상관관계를 나타냈고, 특히, 경상분지지역은 높은 지열류량분포가 암석의 밀도보상으로 인해 모호면의 상승을 가져다 준 것으로 보인다. 이러한 결과는 최근 Kim et al.(2008)에서 언급한 경상분지의 높은 지열류량이 맨틀로부터 야기되는 모델과 부합된다는 사실을 뒷받침해주고 있다.

Keywords

References

  1. Amante, C. and Eakins, B.W. (2008) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, Boulder, CO., August.
  2. Chang, S.J. and Baag, C.E. (2005) Crustal Structure in Southern Korea from Joint Analysis of Teleseismic Receiver Functions and Surface-Wave Dispersion. Bulletin of the Seismological Society of America, v.95(4), p.1516-1534. https://doi.org/10.1785/0120040080
  3. Chang, S.J. and Baag, C.E. (2007) Moho Depth and Crustal Vp/Vs Variation in Southern korea from Teleseismic Receiver Function: Implication for Tectonic Affinity between the Korean Peninsula and China. Bullentin of the Seismological Society of America, v.97(5), p.1621-1631. https://doi.org/10.1785/0120050264
  4. Cho, H.M., Baag, C.E., Lee, J.M., Moon, W.M, Jung, H., Kim, K.Y. and Asudeh, I. (2006) Crustal velocity structure across the southern Korean Peninsula from seismic refraction survey. Geophy. Res. Lett., 33, L06307.
  5. Choi, K.S. (1986) A Study on the gravity in the southern part of the Korean peninsula. Ph. D. Thesis, Univ. Seoul State, p.110.
  6. Choi, K.S. and Shin, Y.H. (1996) Isostasy in and around the Korean Peninsula by anlalysing gravity and topography data. Jour. Geol. Soc. Korea, v.32(4), p.407-420.
  7. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula. Earth-Science Reviews., v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  8. Heiskanen, W.A. and Vening Meinesz. F.A. (1958) The earth and its gravity field. McGraw-Hill Book Co, Inc.
  9. Hernandez. O. (2006) Tectonic analysis of northwestern South America from integrated satellite, airborne and surface potential field anomalies. Ph. D. Thesis, Univ. Ohio State, p.14-17.
  10. Huang, H., Yun, H.S., Lee, D.H. and Jeong, T.J. (2009) Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea. Korea Society of Civil Engineers, v.29(1D), p.161-166.
  11. International Centre for Global Earth Models, http://icgem.gfz-potsdam.de/ICGEM/
  12. Kim, H.C. and Song M.Y. (2003) Relation of lithology, geologic time and Moho depth to heat flow of South Korea. Jour. Korean Earth Science Society, Sept. 26, p.52-56.
  13. Kim. H.C. and Lee. Y.M. (2007) Heat flow in the Republic of Korea, Journal of Geophysical Research, 112, B05413.
  14. Kim, H.R., Hwang, J.S., Suh, M.C. and von Frese, R.R.B. (2008) Crustal thickness of Korean Peninsula and neighboring seas from the free-air gravity and topography. American Geophysical Union, Fall Meeting, abstract #GP43B-0804.
  15. Kim, J.C., Lee, Y.M. and Koo, M.H. (2008) Heat flow and geothermal modeling for the Gyeongsang basin and the Ulleung basin in Korea. Proc. Geol. Soc. Korea, p.51.
  16. Kim. J.W., von Frese, R.R.B. and Kim, H.R. (2000) Crustal modeling from spectrally correlated free-air and terrain gravity data - A case study of Ohio. Geophysics, v.65(4), p.1057-1069. https://doi.org/10.1190/1.1444799
  17. Kim, J.W., Cho, J.D., Kim, W.K., Min, K.D., Hwang, J.H., Lee, Y.S., Park, C.H., Kwon, J.H. and Hwang, J,S. (2003) Extraction of Moho Undulation of the Korean Peninsula from Gravity Anomalies. Econ. Environ. Geol., v.36(3), p.213-223.
  18. Kim, S.J. and Kim, S.G. (1983) A study on the Crustal Structure of South Korea by using Seismic Waves. Jour. Korean Inst. Mining Geol., v.16(1), p.51-61.
  19. Kim, S.K. and Jung, B.H. (1985) Crustal Structure of the Southern Part of Korea. Jour. Korean Inst. Mining Geol., v.18(2), p.151-157.
  20. Kim, S.K. (1995) A Study on the Crustal Structure of the Korean Peninsula. Jour. Geol. Soc. Korea., v.31(4), p.393-403.
  21. Kwon, B.D. and Yang. S.Y. (1985) A Study on the crustal structure of the southern korean peninsula through gravity analysis. Jour. Korean Inst. Mining Geol., v.18(4), p.309-320.
  22. Lee, C.K., Kwon, B.D., Lee, H.S., Cho, I.K., Oh, S.H., Song, Y.H. and Lee, T.J. (2007) Study on the Geoelectrical Structure of the Upper Crust Using the Magnetotelluric Data Along a Transect Across the Korean Peninsula. Jour. Korean Earth Science Soc. v.28(2). p.187-201. https://doi.org/10.5467/JKESS.2007.28.2.187
  23. Lee, K. (1979) On crustal structure of the Korean Peninsula, Jour. Geol. Soc. Korea, v.15(4), p.253-258.
  24. Leftwich, T.E., von Frese, R.R.B., Potts, L.V., Kim, H.R., Roman, D.R., Taylor, P.T. and Barton, M. (2005) Crustal modeling of the North Atlantic from spectrally correlated free-air and terrain gravity. Journal of Geodynamics, v40(1), p23-50. https://doi.org/10.1016/j.jog.2005.05.001
  25. National Geophysical Data Center, http://www.ngdc.noaa.gov/mgg/global/global.html
  26. National Geospatial-Intelligence Agency, http://earthinfo.nga.mil/GandG/wgs84/gravitymod/egm2008/
  27. Park, J.C., Ham, I.K., Kim, W. and Choi, K.S. (2003) A study on crustal thickness of the southern Korean Peninsula using travel times of PmP phase. Jour. Geol. Soc. Korea, v.39(2), p.225-234.
  28. Park, J.M., Kim, H.C., Lee Y.M. and Song, M,Y. (2007) A Study on Thermal Properties of Rocks from Gyeonggi-do Gangwon-do, Chungchung-do, Korea., Econ. Environ. Geol., v.40(6), p.761-769.
  29. Park. S.H. (2008) Geothermal Resource Assessment in Korea. M. S, Univ. Kongju, p.34-36.
  30. Pavlis. N.K., Holmes, S.A., Kenyon, S.C. and Factor, J.K. (2008) An Earth Gravitational Model to Degree 2160: EGM2008, presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18.
  31. Shin, Y.H., Park, J.U. and Park, P.H. (2006) Deformation of Moho in the Southern Part of the Korean Peninsula. Jour. Korean Earth Science Society, v.27(6), p.620-642.
  32. Shin, Y.H. (2006) Implications of gravity anomalies in the tectonic provinces of the southern part of the Korean Peninsula. Jour. Geol. Soc. Korea, v.42(3), p.397-411.
  33. von Frese, R.R.B., Jones, M.B., Kim, J.W. and Kim, J.H., (1997) Analysis of anomaly correlations. Geophysic, v.62(1), p.342-351. https://doi.org/10.1190/1.1444136
  34. You, S.Y., Min, K.D., Park, C.H. and Won, J.S., (2002) Crustal Structure of the Continent-Ocean Zone around the Middle Eastern Part of Korean Peninsula Using Gravity data. Econ. Environ. Geol., v.35(5), p.455-463.