DOI QR코드

DOI QR Code

Cyanide Attenuation by Granular Activated Carbon and UV-Light

활성탄 및 자외선을 이용한 시안 저감 특성 연구

  • Lee, Hyo-Eun (Department of Earth & Environmental Sciences, Korea University) ;
  • Kim, Young-Jae (Department of Earth & Environmental Sciences, Korea University) ;
  • Park, Soo-Oh (Department of Earth & Environmental Sciences, Korea University) ;
  • Sung, Yoo-Hyun (Development and Environment Team, Korea Resources Corporation) ;
  • Park, Chan-Oh (Development and Environment Team, Korea Resources Corporation) ;
  • Lee, Hyun-Ju (Water treatment and Rock Engineering Rsearch Team, Institute of Mine Reclamation Technology) ;
  • Jang, Min (Water treatment and Rock Engineering Rsearch Team, Institute of Mine Reclamation Technology) ;
  • Lee, Young-Jae (Department of Earth & Environmental Sciences, Korea University)
  • 이효은 (고려대학교 지구환경과학과) ;
  • 김영재 (고려대학교 지구환경과학과) ;
  • 박수오 (고려대학교 지구환경과학과) ;
  • 성유현 (한국광물자원공사) ;
  • 박찬오 (한국광물자원공사) ;
  • 이현주 (한국광해관리공단) ;
  • 장민 (한국광해관리공단) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2011.12.01
  • Accepted : 2011.12.22
  • Published : 2011.12.28

Abstract

Sorption of cyanide on granular activated carbon and attenuation of the cyanide by UV-light over a wide range of conditions such as pH and concentration were investigated through batch experiments. Cyanide uptake by activated carbon is much effective at $[CN]_{ini}$ < 2 mg/L. The sorption of cyanide on activated carbon at pH 7.0 is greater than that of pH 9.0. It is found that the ratio of CN uptake to CN in solution increases at pH 9.0 whereas at pH 7.0 the ratio decreases, suggesting that reactivity of activated carbon increases as a function of pH. The sorption of cyanide rapidly increases during the first 30 min, followed by sharp desorption until 3hr, and then the sorption increases and reaches the maximum sorption during the duration of experiments, implying that the sorption mode could be changed through conformational change during the initial stage of the cyanide uptake by activated carbon. Total amount of cyanide desorbed from the activated carbon during the period of desorption experiments is less than 1.5% of total sorbed cyanide, indicative of strong and stable sorption of cyanide on the activated carbon. The sorption with mixture of activated carbon and Ham-Baek sludge shows less effective on the removal of the cyanide. It is noted that UV-light is much effective on the removal of cyanide but also the attenuation is achieved until $[CN]_{tot}$ is up to 10 mg/L. Our findings demonstrate that both activated carbon and UV-light are very effective on the attenuation of cyanide over a wide range of environmental conditions.

활성탄과 자외선을 이용한 시안 저감 연구를 위해 다양한 농도조건 및 넓은 pH 범위에서 배치실험을 수행하였다. 활성탄을 이용한 시안흡착은 시안의 초기농도 2 mg/L 이하에서 매우 효율적인 것으로 나타났으며, 시안 초기농도 3 mg/L 이하에서는 pH 7.0 에서의 흡착이 우수하였고, 그 이상의 시안 초기농도 구간에서는 pH 9.0일 경우 흡착량이 많은 것으로 관찰된다. 전체적인 흡착 패턴을 봤을 때, pH 9.0 에서는 시안의 초기농도가 증가함에 따라 흡착이 증가하는 양상을 보이는 반면 pH 7.0 에서는 흡착이 감소하는 양상을 보였다. 이는 활성탄의 반응성이 pH에 따라 변화하고 있음을 시사한다. 시간에 따른 시안의 흡착 결과, 반응 후 초기 30분 동안 빠른 흡착을 보이나 3시간 이내에 급격히 탈착되며, 그 이후로는 흡착이 다시 증가하여 최대 흡착에 이르는 양상을 보이고 있다. 이는 활성탄을 이용한 시안의 초기 흡착모드가 시간에 따라 변화하고 있음을 나타내고 있다. 탈착실험 결과, 활성탄에 흡착된 총 시안 중 최대 1.5%의 탈착을 일으키는 것으로 나타났다. 그밖에 활성탄과 함백탄광슬러지의 혼합물을 이용한 시안흡착은 0.76 mg/g의 낮은 저감효율을 나타냈다. 자외선에 의해서는 최대 96.6%의 매우 효율적인 저감을 보였으며, 시안의 초기농도가 높아질수록 활성탄을 이용한 시안의 저감보다 많은 양의 시안을 저감시키는 것으로 관찰된다. 이번 실험결과는 활성탄과 자외선 모두가 다양한 조건의 환경에서도 시안저감에 효율적일 수 있다는 것을 보여준다.

Keywords

References

  1. Ministry of Environment (2011a) Enforcement decree of the Management of drinking Water act.
  2. Ministry of Environment (2011b) Water guality & Water Ecosystem.
  3. Asperger, S. (1952) Kinetics of the decomposition of potassium ferrocyanide in ultra violet light, Traris. Faraday Soc., 48, 617 https://doi.org/10.1039/tf9524800617
  4. Chamberlin, N,S. and Snyder, H.B. (1955) Technology of treating plating waste, in Proceedings of the 10th Purdue Industrial Waste Conference, Purdue University, West Lafayette, IN, P.277
  5. Devuyst, E.A., Tandi, B. and Conard, B.R. (1986) Treatment of cyanide-ferrocyande effluents, U.S. Patent No. 4,615,873
  6. Devuyst, E.A., Robbins, G., Vergunst, R., Tandi, B. and Iamariono, P.E. (1992) INCO's cyanide removal technology working well, Mining Eng., Reb., 205
  7. Dzombak, D.A., Ghosh, R.S. and Wong-Chong, G.M. (2006) Cyanide in water and soil; Chemistry, Risd, and Management, Taylor & Francis Group, LLC
  8. EPA (1994) Technical Report : Treatment of cyanide heap leaches and tailing, EPA530-R-94-037
  9. Gaspar, V. and Beck, M.T. (1983) Kinetics of the photoaquation of hexacyanoferrate(II) ion, Polyhedron, 2, 387 https://doi.org/10.1016/S0277-5387(00)83934-0
  10. Gurol, M.D. and Holden, T.E. (1988) The effect of copper and iron complexation on removal of cyanide by ozone, Ind. Eng. Chem. Res., 27, 1157 https://doi.org/10.1021/ie00079a012
  11. Herlancher, M.F. and McGregor, F.R. (1987) Photozone destruction ofr cyanide waste at Tinker AFB (polot plant ruselts), paper No. 870746, in Proceedings ofr 23rd Annual Aerospace/Airline Plating and Metal Finishing Forum and Exposition, Jacksonville, EL
  12. Higgs Associates, E.V.S. Consultants, British Columbia Technical and Research Commitee on Reclamation (1992) Technical guide for the environmental management of cyanide in mining, British Columbia
  13. Lopes R.F. and R.J. Johnson (1988) A Technical Review of Heap Leaching, Environmental Management for the 1990s, Society for Mining, Metallurgy, and Exploration, Inc.
  14. Lotfi Monser, Nafaa Adhoum (2002) Modified activated carbon for the removal of copper, zinc, chromium and cyandie from wastewater, Seperation and Purification Technology, 26, 137-146. https://doi.org/10.1016/S1383-5866(01)00155-1
  15. Onal, Yunus (2006) Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot, Journal of Hazardous Materials, B137, 1719-1728.
  16. Palmer, S.A.K., Breton, M.A., Nunno, T.J., Sullivan, D.M. and Surprenant, N.F. (1988) Metal/Cyanide Containing Wastes: Treatment Technologies, Corp, N.D., Ed., Noyes Data Corp, Park Ridge, NJ
  17. Scott Rader, W., Solujic, L., Milosavljevic, E.B. and Hendrix, J.L. (1993) Sunligh-induced photochemistry of aqueous solutions of hexacyanoferrate-(II) and -(III) ions, Environ. Sci. Technol., 27, 1875 https://doi.org/10.1021/es00046a016
  18. Smith, A. and Mudder, T. (1991) The Chemistry and Treatment of Cyanidation Wastes, Mining Journal Books, Ltd., London
  19. Shelton, S.P. (1979) Examination of treatment methods for cyanide wastes, Report No. NADC-78198-60, Naval Material Command
  20. UNEP, Spill of liquid and suspended waste at the Aurul S.A. (2000) Retreatment Plant in Baia Mare, Romania, United Nations Envrionment Programme, Geneva, Switzerland, Http://www.uneptie.org/pc/mining/library/publications/assmnt.htm
  21. Van Zyl (1988) Introduction to Evaluation, Design, and Operation of Precious Metal Heap Leashing Projects, Society for Mining, Metallurgy, and Exploration, Inc.