DOI QR코드

DOI QR Code

Review on the impact of Arctic Amplification on winter cold surges over east Asia

북극 온난화 증폭이 겨울철 동아시아 한파 발생에 미치는 영향 고찰

  • 김성중 (한국해양과학기술원 부설 극지연구소) ;
  • 김정훈 (한국해양과학기술원 부설 극지연구소) ;
  • 전상윤 (한국해양과학기술원 부설 극지연구소) ;
  • 김맹기 (공주대학교) ;
  • 이솔지 (한국해양과학기술원 부설 극지연구소)
  • Received : 2021.09.10
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

In response to the increase in atmospheric carbon dioxide and greenhouse gases, the global mean temperature is rising rapidly. In particular, the warming of the Arctic is two to three times faster than the rest. Associated with the rapid Arctic warming, the sea ice shows decreasing trends in all seasons. The faster Arctic warming is due to ice-albedo feedback by the presence of snow and ice in polar regions, which have higher reflectivity than the ocean, the bare land, or vegetation, higher long-wave heat loss to space than lower latitudes by lower surface temperature in the Arctic than lower latitudes, different stability of atmosphere between the Arctic and lower latitudes, where low stability leads to larger heat losses to atmosphere from surface by larger latent heat fluxes than the Arctic, where high stability, especially in winter, prohibits losing heat to atmosphere, increase in clouds and water vapor in the Arctic atmosphere that subsequently act as green house gases, and finally due to the increase in sensible heat fluxes from low latitudes to the Arctic via lower troposphere. In contrast to the rapid Arctic warming, in midlatitudes, especially in eastern Asia and eastern North America, cold air outbreaks occur more frequently and last longer in recent decades. Two pathways have been suggested to link the Arctic warming to cold air outbreaks over midlatitudes. The first is through troposphere in synoptic-scales by enhancing the Siberian high via a development of Rossby wave trains initiated from the Arctic, especially the Barents-Kara Seas. The second is via stratosphere by activating planetary waves to stratosphere and beyond, that leads to warming in the Arctic stratosphere and increase in geopotential height that subsequently weakens the polar vortex and results in cold air outbreaks in midlatitudes for several months. There exists lags between the Arctic warming and cold events in midlatitudes. Thus, understanding chain reactions from the Arctic warming to midlatitude cooling could help improve a predictability of seasonal winter weather in midlatitudes. This study reviews the results on the Arctic warming and its connection to midlatitudes and examines the trends in surface temperature and the Arctic sea ice.

산업화 이후 대기 이산화탄소를 포함한 온실가스 증가에 따라 전지구 기온이 빠르게 올라가고 있는데, 특히 북극의 온난화가 저위도에 비해 2-3배 빠르다. 그리고 온난화와 함께 북극 해빙의 농도와 면적도 지속적으로 감소추세에 있다. 이는 온난화에 대한 북극의 눈과 얼음에 의한 알베도 피드백, 표면기온 차이에 의해 더 많은 에너지를 잃는 플랑크 피드백, 저위도와 고위도의 안정도 차이에 의한 기온감률 피드백, 북극해 온난화에 의한 구름과 수증기 증가 피드백, 그리고 북극으로의 현열속 증가 등에 의한다. 이와 같이 급격한 북극 온난화에 반해 중위도에는 냉각화가 나타나고, 지역에 따라 한파가 더 자주 나타나고 오래 지속되는 경향을 보이는데, 이는 북극 온난화 증폭과 연관 있다는 연구결과들이 많이 보고되고 있다. 북극 온난화는 2가지 경로를 통해 중위도 냉각화로 연결되는데, 하나는 종관규모로 주로 블로킹과 로스비 파동의 발달에 의한 시베리아 고기압을 강화시켜 대류권에서 일어나는 현상이며, 두 번째는 북극 온난화에 의한 상층으로의 행성파 전달을 활성화하여 폴라보텍스를 약화시켜 성층권을 경유해 수개월 동안 나타나는 경로이다. 중위도 한파와 북극 온난화 증폭 간에는 수주에서 수개월의 시차가 존재하기 때문에, 북극 온난화부터 중위도 한파에 이르는 일련의 연쇄 과정을 이해할 수 있으면 겨울철 중위도 기상 예측의 정확성을 높일 수 있다. 이연구에서는 기존에 보고된 많은 결과들을 종합하고 온도와 해빙 변화 경향 분석을 통해 현재 진행되는 북극 온난화와 중위도 냉각화 경향 그리고 이 둘 간의 관계를 고찰해 보고자 한다.

Keywords

Acknowledgement

본 연구는 극지연구소 "북극 해양·해빙 변화에 기인한 북극과 한반도의 재해기상 현상 모델링 시스템(KPOPS-Earth)의 개발 및 활용" 사업 (PE21010)의 지원으로 수행되었습니다.

References

  1. Allen, R. J., Zender, C. S., 2011, Forcing of the Arctic Oscillation by Eurasian snow cover, Journal of Climate, 24, 6528-6539. https://doi.org/10.1175/2011JCLI4157.1
  2. Baldwin, M. P., Dunkerton, T. J., 2001, Stratospheric harbingers of anomalous weather regimes, Science, 294, 581-584. https://doi.org/10.1126/science.1063315
  3. Barnes, E. A., Screen, J. A., 2015, The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIREs Climate Change, 6, 277-286. https://doi.org/10.1002/wcc.337
  4. Blackport, R., Screen, J., van der Wiel, K., Bintanja, R., 2019, Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes, Nature Climate Change, 9, 697-704. https://doi.org/10.1038/s41558-019-0551-4
  5. Blackport, R., Screen, J., 2020, Insignificant effect of Arctic amplification on the Amplitude of midlatitude atmospheric waves, Science Advances, 6, eaay2880.
  6. Blunden, J., Arndt, D. S., 2019, State of the Climate in 2018, Bulletin of American Meteorological Society, 100 (9), Si-S306.
  7. Choi, Y. S., Kim, B. M., , Hur S. K., Kim, S. J., Kim, J. H., 2014, Connecting early summer cloud-controlled sunlight and late summer sea ice in the Arctic, Journal of Geophysical Research, 119, 11087-11099. https://doi.org/10.1002/2014JD022013
  8. Cohen, J., Rind, D., 1991, The effect of snow cover on the climate, Journal of Climate, 4, 689-706. https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
  9. Cohen, J., Entekhabi, D., 1999, Eurasian snow cover variability and Northern Hemisphere climate variability, Geophysical Research Letter, 26, 345-348. https://doi.org/10.1029/1998GL900321
  10. Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., Jones, J., 2014, Recent Arctic amplification and extreme mid-latitude weather, Nature Geoscience, 7, 627-637. https://doi.org/10.1038/ngeo2234
  11. Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu, H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F., Lee, S., Linderholm, H. W., Maslowski, W., Peings, Y., Pfeiffer, K., Rigor, I., Semmler, T., Stroeve, J., Taylor, P. C., Vavrus, S., Vihma, T., Wang, S., Wendisch, M., Wu, Y., Yoon, J - Show fewer authors, 2020, Divergent consensuses on Arctic amplification influence on midlatitude severe weather, Nature Climate Change, 10, 20-29. https://doi.org/10.1038/s41558-019-0662-y
  12. Fletcher, C. G., Hardiman, S. C., Kushner, P. J., Cohen, J., 2009, The dynamical response to snow cover perturbations in a large ensemble of Atmospheric GCM Integrations, Journal of Climate, 22, 1208-1222. https://doi.org/10.1175/2008JCLI2505.1
  13. Francis, J. A,, Vavrus, S. J., 2012, Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophysical Research Letters, 39 (L06801).
  14. Furtado, J. C., Cohen, J. L., Tziperman, E., 2016, The combined influences of autumnal snow and sea ice on Northern Hemisphere winters, Geophysical Research Letters, 43, 3478-3485. https://doi.org/10.1002/2016GL068108
  15. Ghatak, D., Deser, C., Frei, A., Gong, G., Phillips, A., Robinson, D. A., Stroeve, J., 2012, Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979-2008, Journal Geophysical Research, 117 (D23108).
  16. Gong, D., Kim, S. J., Ho, C. H., 2007, Arctic Oscillation and ice severity in the Bohai Sea, East Asia, International Journal of Climatology, 27, 1287-1302. https://doi.org/10.1002/joc.1470
  17. Gong, G., Entekhabi, D., Cohen, J., 2003, Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies, Journal of Climate, 16, 3917-3931. https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2
  18. Graversen, R. G., Mauritsen, T., Tjernstrom, M., Kallen, E, Svensson, G., 2008, Vertical structure of recent Arctic warming, Nature 451, 53-56. https://doi.org/10.1038/nature06502
  19. Graversen, R. G., Wang, M., 2009, Polar amplification in a coupled climate model with locked albedo, Climate Dynamics, 33, 629-643. https://doi.org/10.1007/s00382-009-0535-6
  20. Guan, W., Jiang, X., Ren, X., Chen, G., Ding, Q., 2020, Role of Atmospheric Variability in Driving the"Warm- Arctic, Cold-Continent" Pattern Over the North America Sector and Sea Ice Variability Over the Chukchi-Bering Sea, Geophysical Research Letters, 47, e2020GL088599.
  21. Honda, M., Inoue, J., Yamane, S., 2009, Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters, Geophysical Research Letters, 36 (L08707).
  22. Inoue, J., Hori, M. E., Takaya, K., 2012, The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly, Journal of Climate, 25, 2561-2568. https://doi.org/10.1175/JCLI-D-11-00449.1
  23. IPCC Climate Change, 2021, Summary for Pilicymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekci, O., Yu, R. Zhou, B. (eds.)]. Cambridge University Press, UK and NY, USA.
  24. IPCC, 2019, Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, [Portner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weye, N.M.(eds.)], In press.
  25. Jeong, J. H,, Ou, T., Linderholm, H. W., Kim, B. M., Kim, S. J., Kug, J. S., Chen, D., 2011, Recent recovery of the Siberian High intensity, Journal of Geophysical Research, 116 (D23102).
  26. Jin, C., Wang, B., Yang, Y. M., Liu, J., 2020, "Warm Arctic-cold Siberia" as an internal mode instigated by North Atlantic warming, Geophysical Research Letters, 47, e2019GL086248.
  27. Jun, S. Y., Ho, C. H., Jeong, J. H., Choi, Y. S., Kim, B. M., 2016, Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions, Tellus, 68, 29130.
  28. Jun, S. Y., Choi, S. J., Kim, B. M., 2018, Dynamical core in Atmospheric model does matter in the simulation of Arctic climate, Geophysical Research Letters, 45, 2805-2814. https://doi.org/10.1002/2018GL077478
  29. Jun, S. Y., Kim, J. H., Choi, J., Kim, S. J., Kim, B. M., An, S. I., 2020, The internal origin of the west-east asymmetry of Antarctic climate change, Science Advances, 6, eaaz1490.
  30. Jung, E., J.-H. Jeong, S.-H. Woo, B.-M. Kim, J.-H. Yoon, G.-H. Lim, 2021, Impacts of the Arctic-midlatitude teleconnection on wintertime seasonal climate forecasts, 15, 094045. https://doi.org/10.1088/1748-9326/aba3a3
  31. Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X., Shim, T. H., Yoon, J. H., 2014, Weakening of the stratosphere polar vortex by Arctic sea-ice loss, Nature Communications, 5 (4646).
  32. Kim, B. M., Hong, J. Y., Jun, S. Y., Zhang, X., 2017, Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm, Scientific Reports, 7 (40051).
  33. King, M. P., Garcia-Serrano, J., 2016, Potential ocean-atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly, Tellus A, 68(28580).
  34. Kretschmer, M., Coumou, D., Donges, J. F., Runge, J., 2016, Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation, Journal of Climate, 29, 4069-4081. https://doi.org/10.1175/JCLI-D-15-0654.1
  35. Kug, J. S., Jeong, J. H., Jang, Y. S., Kim, B. M., Folland, C. K., Min, S. K., Son, S. W., 2015, Two distinct influences of Arctic warming on cold winters over North America and East Asia, Nature Geoscience, 8, 759-762. https://doi.org/10.1038/ngeo2517
  36. Limpasuvan, V., Thompson, D. J., Hartmann, D. L., 2004, The life cycle of the Northern Hemisphere sudden stratospheric warmings, Journal of Climate, 17 (13), 2584-2596. https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2
  37. Liu, J., Curry, J. A., Wang, H., Song, M., Horton R. M., 2012, Impact of declining Arctic sea ice on winter snowfall, Proceedings of the National Academy of Sciences of the United States of America, 109, 4074-4079. https://doi.org/10.1073/pnas.1114910109
  38. Lu, J. M., Ju, J. H., Kim, S. J., Ren, J. Z., Zhu, Y. X., 2008, Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau, Journal of Geophysical Research, 113, D14117.
  39. Luo, D., Yao, Y., Dai, A., Simmonds, I., Zhong, L., 2017, Increased quasi stationary and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation, Journal of Climate, 30, 3569-3587. https://doi.org/10.1175/JCLI-D-16-0262.1
  40. Manabe, S., Stouffer, R. J., Spelman, M. J., Bryan, K., 1991, Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2, Part I: Annual mean response, Journal of Climate, 4, 785-818. https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2
  41. McCusker, K. E., Fyfe, J. C., Sigmond, M., 2016, Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss, Nature Geoscience, 9, 838-842. https://doi.org/10.1038/ngeo2820
  42. Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin M. P., Charlton-Perez, A. J., 2013, The influence of stratospheric vortex displacements and splits on surface climate, Journal of Climate, 26, 2668-2682. https://doi.org/10.1175/JCLI-D-12-00030.1
  43. Mori, M., Watanabe, M., Shiogama, H., Inoue, J., Kimoto M., 2014, Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades, Nature Geoscience, 7, 869-873. https://doi.org/10.1038/ngeo2277
  44. Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H., Kimoto, M., 2019, A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling, Nature Climate Change, 9, 123-129. https://doi.org/10.1038/s41558-018-0379-3
  45. Nakanowatari, T., Sato, K., Inoue, J., 2014, Predictability of the Barents Sea ice in early winter: remote effects of oceanic and atmospheric thermal conditions from the North Atlantic, Journal of Climate, 27, 8884-8901. https://doi.org/10.1175/JCLI-D-14-00125.1
  46. Overland, J. E., Wang, M., 2010, Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice, Tellus A, 62, 1-9. https://doi.org/10.1111/j.1600-0870.2009.00421.x
  47. Overland, J. E., Francis, J. A., Hall, R., Hanna, E., Kim, S. J., Vihma, T., 2015, The melting Arctic and midlatitude weather patterns: Are they connected?, Journal of Climate, 28 (20), 7917-7932. https://doi.org/10.1175/JCLI-D-14-00822.1
  48. Overland, J. E., Dethloff, K., Francis, J. A., Hall, R. J., Hanna, E., Kim, S. J., Screen, J. A., Shepherd, T. G., Vihma, T., 2016, Nonlinear response of midlatitude weather to the changing Arctic, Nature Climate Change, 6, 992-999. https://doi.org/10.1038/nclimate3121
  49. Park, T. W., Jeong, J. H., Ho, C. H., Kim, S. J., 2008, Characteristics of Atmospheric circulation associated with cold surge occurrences in East Asia: A case study during 2005/2006 winter, Advances in Atmospheric Sciences, 25, 791-804. https://doi.org/10.1007/s00376-008-0791-0
  50. Park, T. W., Ho, C. H., Yang, S., 2011, Relationship between the Arctic Oscillation and cold surges over East Asia, Journal of Climate, 24, 68-83. https://doi.org/10.1175/2010JCLI3529.1
  51. Peings, Y., Saint-Martin, D., Douville, H., 2012, A numerical sensitivity study of the influence of Siberian snow on the Northern Annular Mode, Journal of Climate, 25, 592-607. https://doi.org/10.1175/JCLI-D-11-00038.1
  52. Petoukhov, V., Semenov, V. A., 2010, A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents, Journal of Geophysical Research, 115 (D21111).
  53. Pithan, F., Mauritsen, T., 2014, Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nature Geoscience, 7. 181-184. https://doi.org/10.1038/ngeo2071
  54. Sato, K., Inoue, J., Watanabe, M., 2014, Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter, Environmental Research Letters, 9 (084009).
  55. Schlichtholz, P., 2016, Empirical relationships between summertime oceanic heat anomalies in the Nordic seas and large-scale atmospheric circulation in the following winter, Climate Dynamics, 47, 1735-1753. https://doi.org/10.1007/s00382-015-2930-5
  56. Screen, J. A., Simmonds, I., 2010, The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334-1337. https://doi.org/10.1038/nature09051
  57. Screen, J. A., 2017, The missing Northern European winter cooling response to Arctic sea ice loss, Nature Communications, 8, 14603.
  58. Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., Oudar, T., McCusker, K. E., Sun, L., 2018, Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models, Nature Geoscience, 11, 155-163. https://doi.org/10.1038/s41561-018-0059-y
  59. Serreze, M. C,, Francis, J. A., 2006, The Arctic amplification debate, Climatic Change, 76, 241-264. https://doi.org/10.1007/s10584-005-9017-y
  60. Serreze, M. C., Barret, A. P., Stroeve, J. C., Kindig, D. N., Holland, M. M., 2009, The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11-19. https://doi.org/10.5194/tc-3-11-2009
  61. Serreze, M. C., Barry, R. G., 2011, Processes and impacts of Arctic amplification: A research synthesis, Global and Planet Change, 77, 85-96. https://doi.org/10.1016/j.gloplacha.2011.03.004
  62. Stroeve, J. C., Kattsov, V., Barrett, A., Serrese, M., Pavlova, T., Holland, M., Meier W. N., 2012, Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, Geophysical Research Letters, 39, L16502.
  63. Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S. P., Kim, D., McGregor, S., Zhang, W., Zhao, S., Cai, W., Dong, Y., Jin, F. F., 2018, Polar amplification dominated by local forcing and feedbacks, Nature Climate Change, 8, 1076-1081. https://doi.org/10.1038/s41558-018-0339-y
  64. Sun, L., Perlwitz, J., Hoerling, M., 2016, What caused the recent "Warm Arctic, Cold Continents" trend pattern in winter temperature? Geophysical Research Letters, 43, 5345-5352. https://doi.org/10.1002/2016GL069024
  65. Takaya, K., Nakamura, H., 2005, Mechanisms of intraseasonal amplification of the cold Siberian high, Journal of the Atmospheric Sciences, 62, 4423-4440. https://doi.org/10.1175/JAS3629.1
  66. Tang, Q., Zhang, X., Yang, X., Francis, J. A., 2013, Cold winter extremes in northern continents linked to Arctic sea ice loss, Environmental Research Letters, 8, 014036.
  67. Vavrus, S., 2004, The Impact of Cloud Feedbacks on Arctic Climate under Greenhouse Forcing, Journal of Climate, 17, 603-615. https://doi.org/10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
  68. Vihma, T., 2014, Effects of Arctic sea ice decline on weather and climate: A review, Surveys in Geophysics, 35, 1175-1214. https://doi.org/10.1007/s10712-014-9284-0
  69. Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E., Walsh, J. E., et al. 2014. Global warming and winter weather, Science, 343, 729-730. https://doi.org/10.1126/science.343.6172.729
  70. Walsh, J. E., 2014, Intensified warming of the Arctic: Causes and impacts on middle latitudes, Global and Planetary Change, 117, 52-63. https://doi.org/10.1016/j.gloplacha.2014.03.003
  71. Wegman, M., Orsolini, Y., Vazquez, M., Gimeno, L., Nieto, R., Bulygina, O., Jaiser, R., Handorf, D., Rinke, A., Dethloff, K., 2015, Arctic moisture source for Eurasian snow cover variations in autumn, Environmental Research Letters, 10 (5), 054015.
  72. Woo, S. H., Kim, B. M., Jeong, J. H., Kim, S. J., 2012, Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979-2011), Journal of Geophysical Research, 117 (D18117).
  73. Wu, B., Yang, K., Francis, J. A., 2017, A cold event in Asia during January-February 2012 and its possible association with Arctic sea-ice loss, Journal of Climate, 30, 7971-7990. https://doi.org/10.1175/JCLI-D-16-0115.1
  74. Yao, Y., Luo, D., Dai, A., Simmonds, I., 2017, Increased quasi stationary and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses, Journal of Climate, 30, 3549-3568. https://doi.org/10.1175/JCLI-D-16-0261.1