• Title/Summary/Keyword: 텍스트마이닝 기법

Search Result 471, Processing Time 0.035 seconds

Case Study on Public Document Classification System That Utilizes Text-Mining Technique in BigData Environment (빅데이터 환경에서 텍스트마이닝 기법을 활용한 공공문서 분류체계의 적용사례 연구)

  • Shim, Jang-sup;Lee, Kang-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1085-1089
    • /
    • 2015
  • Text-mining technique in the past had difficulty in realizing the analysis algorithm due to text complexity and degree of freedom that variables in the text have. Although the algorithm demanded lots of effort to get meaningful result, mechanical text analysis took more time than human text analysis. However, along with the development of hardware and analysis algorithm, big data technology has appeared. Thanks to big data technology, all the previously mentioned problems have been solved while analysis through text-mining is recognized to be valuable as well. However, applying text-mining to Korean text is still at the initial stage due to the linguistic domain characteristics that the Korean language has. If not only the data searching but also the analysis through text-mining is possible, saving the cost of human and material resources required for text analysis will lead efficient resource utilization in numerous public work fields. Thus, in this paper, we compare and evaluate the public document classification by handwork to public document classification where word frequency(TF-IDF) in a text-mining-based text and Cosine similarity between each document have been utilized in big data environment.

  • PDF

Text Assocation Pattern Extraction using NFP-tree Algorithm (NFP-Algorithm 알고리즘을 기반한 텍스트 연관 패턴 추출)

  • Yu, Soo-Kung;Kim, Kio-chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.97-100
    • /
    • 2004
  • 인터넷상에서 존재하는 많은 데이터베이스들 중 현실적으로 유용한 정보를 가지고 있는 것은 텍스트 데이타베이스이다. 텍스트 마이닝 기법에서 비구조적인 특징을 가진 텍스트 데이타로부터 유용한 정보를 분석하고 추출하여 연관된 패턴을 탐색하는 과정은 중요한 연구과제이다. 이에 본 논문은 인터넷에서 저장된 텍스트 데이터를 가지고 기존 텍스트 마이닝 기법 중 연관탐색 기법을 적용하여 사용자 중심의 연관된 패턴을 찾아서 의미있는 정보를 얻고자 한다. 탐색하기 위해 먼저 전처리 작업으로 용어의 객체를 추출하고. 추출된 각 객체들은 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관탐색 기법인 NFP-Algorithm(N-most interesting k-itemsets Using FP-tree and FP-Growth)을 적용시켜서 의미있는 정보를 추출했다. 또한 Apriori계 Algorithm, FP-Algorithm, NFP-Algorithm을 비교하여 NFP-Algorithm이 시간적면에서 효율적임을 보여주었다.

  • PDF

A Comparison of Text Mining Algorithms for Product Review Analysis (상품 리뷰 분석을 위한 텍스트 마이닝 기법의 비교)

  • Lee, Ji-Woong;Jin, Young-Taek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.882-884
    • /
    • 2019
  • 오늘날 정보화 시대에서는 온라인 쇼핑의 상품리뷰 등 대용량의 텍스트 문서가 존재하며 제품에 대한 정서적인 의견뿐만 아니라 제품 선호도 및 상품 비교와 같은 유용한 정보를 제공한다. 본 논문에서는 사용자가 작성한 상품 리뷰로부터 제품의 특성을 비교하는 비교의견을 추출하기 위해 적용한 다양한 텍스트 마이닝 기법의 비교 결과를 제시한다.

Examining the Intellectual Structure of Housing Studies in Korea with Text Mining and Factor Analysis (저자 프로파일링과 요인분석을 이용한 국내 주거학 분야의 지적 구조 분석)

  • Lee, Jae-Yun;Kim, Hee-Jeon;Ryoo, Jong-Duk
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.2
    • /
    • pp.285-308
    • /
    • 2010
  • This study analyzes the intellectual structure in domestic research of the Housing field, by utilizing text mining technique. Unlike the existing research that mainly uses text clustering in statistical analyses to identify subject specialties, core authors, and relationships between research areas, this study applied author profiling and factor analysis. To supplement the analysis of intellectual structure generated by text mining, and to perform evaluation on intellectual structure itself, two professionals in the housing field were interviewed. The intellectual structure, generated through text mining, was evaluated and showed its division of valid research areas that is slightly different from the traditional intellectual structure in the housing field.

Stock Prediction Using News Text Mining and Time Series Analysis (뉴스 텍스트 마이닝과 시계열 분석을 이용한 주가예측)

  • Ahn, Sung-Won;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.364-369
    • /
    • 2010
  • 본 논문에서는 뉴스 텍스트 마이닝을 수행하여 2005년 1월부터 2008년 12월까지 4년 간의 뉴스 데이터에 대해 주가에 호재인지 악재인지 여부에 대해 학습을 하고, 이를 근거로 신규 발행된 뉴스가 주가 상승 또는 하락에 영향을 미치는지를 예측하는 알고리즘을 제안한다. 뉴스 텍스트 마이닝을 위해 변형된 Bag of Words 모델과 Naive Bayesian 분류기법을 사용하였으며, 특히 주가 예측에 있어서 뉴스 마이닝에만 의존하던 기존의 관련 연구와는 달리 예측의 정확성을 높이기 위해 주가의 시계열 데이터 분석기법인 RSI를 추가로 작용하였다. 2009년 11월부터 2010년 2월까지 4개월간 42,355건의 뉴스 데이터에 대해 실험한 결과, 기존 연구 대비 의미 있는 결과인 55.01%의 예측성공률을 얻었다.

  • PDF

Analysis of Prevention Methods by Type of Construction Disaster Using Text Mining Techniques (텍스트마이닝을 활용한 건설현장 재해 유형별 예방 대책 분석)

  • Gyu Pil Jo;Myungdo Lee;Yoon-seok Shin;Baek-Joong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Purpose: This study provides prevention methods by type of construction disaster using text mining techniques. Method: Based on the database that analyzed the cases of critical disasters in the domestic construction sector, preventive measures and causes are analyzed by text mining techniques, and the contents of the analysis are visually shown. Result: This visual data represents the measures for preventing critical disasters of each process according to the importance. Conclusion: It is believed that the results will be helpful in identifying factors to be considered in preparing preventive measures for serious accidents in construction.

Using Text Mining Techniques for Intrusion Detection Problem in Computer Network (텍스트 마이닝 기법을 이용한 컴퓨터 네트워크의 침입 탐지)

  • Oh Seung-Joon;Won Min-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.27-32
    • /
    • 2005
  • Recently there has been much interest in applying data mining to computer network intrusion detection. A new approach, based on the k-Nearest Neighbour(kNN) classifier, is used to classify Program behaviour as normal or intrusive. Each system call is treated as a word and the collection of system calls over each program execution as a document. These documents are then classified using kNN classifier, a Popular method in text mining. A simple example illustrates the proposed procedure.

  • PDF

Design and Implementation of a Text Mining System using Intelligent Miner (인텔리전트마이너를 이용한 텍스트마이닝 시스템의 설계 및 구현)

  • 최윤정;박승수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.316-318
    • /
    • 2000
  • 데이터마이닝 기능은 문서의 구조화되지 않은 텍스트보다는 테이블과 일반적인 DB에 있는 구조화된 자료에 초점이 맞춰져 있다. 정보화의 과정속에서 많은 기업이나 조직들은 과거의 시스템을 DB로 구축하여 어느 정도 형태를 갖추게 되었지만, E-business, E-commerce가 활발해지면서 보유하고 있는 DB기반이 아닌 무작위의 새로운 데이터가 사용자들에 의해 생성되기도 한다. 본 논문에서는 이러한 텍스트 문서에 숨어있는 정보들을 발견하기 위한 텍스트마이닝 과정을 시나리오로 설정하고, 문서와 문서집합에 대해 분석도구를 적용하는 어플리케이션을 구현해 보았다. 대규모의 문서집합에 분석도구를 이용함으로써 빠른 문서처리가 가능하고 이는 사용자가 많은 양의 문서들을 다룰 때의 시간비용을 최소화시킬 수 있는 방법이 될 수 있다. 또한 마이닝과정을 통해 발견한 지식과 특징들을 기반으로 반구조화된 파일로 변환하여, 규칙발견, 데이터마이닝기법을 적용하여 의미있는 새로운 결론을 얻을 수 있을 것이다.

  • PDF

Disease related Gene Identification Using Literature and Google data (텍스트마이닝 기법과 구글데이터를 이용한 질병관련 유전자 식별)

  • Kim, Jeong-U;Kim, Hyeon-Jin;Park, Sang-Hyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1084-1087
    • /
    • 2013
  • 텍스트마이닝은(Text mining) 바이오분야에서 사용되는 도구 중 하나이다. 본 논문에서는 전립선암(Prostate cancer)과 관련된 질병 유전자(Disease gene)를 찾기 위해 텍스트마이닝을 이용하여 유전자 네트워크(Gene-network)를 구축하였다. 추가적으로 구글(Google) 검색을 통해 네트워크 내의 유전자 노드(Node)들 사이의 간선(Edge)에 새로운 가중치(Weight)를 추가하고 네트워크를 재구성하였다. 구축된 네트워크에서 노드와 노드 사이의 가중치를 기반으로 전립선암과 관련된 질병 유전자를 추출하였다. 본 논문의 방법은 성공적으로 네트워크를 구축하고 질병 유전자를 찾았으며, 구글 데이터를 사용하지 않고 네트워크를 구축하는 경우보다 더 높은 정확성을 입증했다.

A Comparative Analysis of Success Factors Between Social Commerce and Multichannel Distribution Using Text Mining Techniques (텍스트마이닝 기법을 이용한 소셜커머스와 멀티채널 유통업체 간 성공요인 비교 연구)

  • Choi, Hyun-Seung;Kim, Ye-Sol;Cho, Hyuk-Jun;Kang, Ju-Young
    • The Journal of Bigdata
    • /
    • v.1 no.2
    • /
    • pp.35-44
    • /
    • 2016
  • Today there is a fierce competition between social commerce and multi-channel distribution in korea and it is need to do comparative analysis about success factors between social commerce and multi-channel distribution. Unlike the other studies that have only used survey method, this study analyzed the success factors between social commerce and multichannel distribution using text mining techniques. We expect that the result of the study not only gives the practical implication for making the competition strategy of the retailers but also contributes to the diverse extension research.

  • PDF