• Title/Summary/Keyword: 충전시설

Search Result 136, Processing Time 0.024 seconds

A Basic Study on the Development of Filling Material using Seismic Retrofit of Masonry Architectural Wall Systems in Educational Facilities. (교육시설물의 조적치장벽체 내진보강에 적용 가능한 충전재 개발 기초연구)

  • Lee, Joo-Hyeong;Oh, Jun-Seok;Jeon, Sang-Sub;Son, Ki-Young;Na, Young-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • South Korea has long been without major earthquakes. But 317 public facilities have been damaged by Po-Hang earthquake. Among them, 103 educational facilities suffered 25.6 billion won worth of damage. This is the most damaging of public facilities. The earthquake damage was mainly centered on non-seismic retrofit educational facilities and masonry architectural wall systems installed on the outer walls of buildings. Therefore, the purpose of this study is to develop a filling material that can be applied to the non-seismic retrofit of masonry architectural wall systems installed on the outer walls of educational facilities. To achieve the objective, first, set the filling material requirements. Second, set the sequence model of experiments and prepare for the experiment. Third, after the experiment, analyze the results obtained through the experiment. Forth, the optimal filling material is selected by comparing the analyzed results with the requirements. As a results, E-S-X sample using epoxy resin were selected for the seismic retrofit of masonry architectural wall systems in educational facilities. In the future, this study can be used as a basic material for developing seismic reinforcement methods guidelines in domestic existing educational facilities.

  • PDF

Safety Analysis of Potential Hazards at Hydrogen Refueling Station (수소충전소 잠재적 위험에 대한 안전성해석)

  • Park, Woo-Il;Kim, Dong-Hwan;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • This study was conducted using FLACS, a specialized gas accident analysis program. Hydrogen refueling stations subject of safety analysis, consist of compression facilities, storage tanks, and hydrogen piping. The safety analysis of potential risk factors was conducted after reflecting the design specifications of major facilities and components, environmental conditions around hydrogen refueling stations, etc. As of 2021, about 70 refueling stations in Korea are available, and 1,200 are scheduled to be introduced in the next 2040. To prepare for possible accidents caused by potential hazards for the safe distribution of hydrogen refueling stations, we intend to derive hydrogen leakage diffusion scenarios and review their safety.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

Biofiltration of Odorous Compounds in Municipal Solid Waste Landfill Gases (생물탈취상에 의한 도시폐기물 매립지가스내 악취물질의 처리)

  • 남궁완;박준석;황의영;이노섭;인병훈;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • Biofiltration is an attractive technique for elimination of VOCs and odorous compounds from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. The objective of this study was to estimate the removal characteristics of Odorous Compounds including $H_2$S, $NH_3$End BTEX in MSW landfill gases. This Study was conducted at Nanjido landfill site. A compost from the Nanjido composting facility was used as a filling material for biofiltration. Extracted landfill gases were injected into biofilter reactors after mixing with air. Experiments were performed in an incubator being set to $20^{\circ}C$ $H_2$S concentrations were monitored at the depths of 25, 50, 75 and 100cm from the bottom Of the biofilter reactors. 98% of $H_2$S was removed at the filling depth of only 25cm. NH$_3$removal rate was about 85%. Toluene removal rate was the highest among BTEX. Significant pH drop of a filling material was not observed during the biofilter operation of 1 month. Without mixing the landfill gas stream with all, the removal rate of $H_2$S decreased down to 30%.

  • PDF

Analysis of Safety Regulation and Chemical Reactivity of Hypergolic Propellant (접촉점화성 추진제 안전기준 및 상호반응성 분석)

  • Eungwoo Lee;Ahntae Shin;Sangyeon Cho;Byeongmun Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.108-115
    • /
    • 2023
  • Although hydrazine is an excellent liquid propellant, caution is required during storage and handling due to its high toxicity and reactivity. Safety guidelines should be established in consideration of the chemical reactivity by unintended leakage. In this study, the status of hydrazine facilities at launch site and safety standards for storing and handling were investigated and then, the reactivity between chemicals and hydrazine was analyzed. As a result of the analysis, hydrazine has reactivity with the exception of fuel oil. This paper emphasizes the imperative nature of constructing a dedicated hydrazine storage facility. Ensuring compatibility between hydrazine and the materials used in storage containers and handling equipment is crucial to prevent undesired reactions that could compromise safety. It was intended to be used as basic data to secure the range safety when handling hydrazine.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

Development and performance of inorganic thixotropic backfill for shield TBM tail voids (무기질계 가소성 TBM 뒤채움재 개발 및 성능)

  • Lee, Seongwoo;Park, Jinseong;Ryu, Yongsun;Choi, Byounghoon;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.263-278
    • /
    • 2022
  • This paper contains experimental study for the development and performance of TBM backfill material with thixotropic properties. The LW backfill material is widely applied to fill the cavity on the back side of the shield TBM excavation, but has disadvantages such as settlement caused by strength reduction, material separation by groundwater, and reduced plasticity. In this paper, laboratory tests and a model test were conducted to assess the performance of inorganic thixotropic backfill material proposed to improve these problems. The results of laboratory tests show that 1 hr-uniaxial compressive strength of ITB was 12 times higher than LW, and the rate of bleeding of 20 hr was 8.3 times lower, and the result of flow table test was more than 27 times higher. This result indicated that the inorganic thixotropic backfill material has superior properties to LW backfill in terms of strength reduction, material separation, and thixotropy. In the model experiment, a model injection device tester was manufactured and the injection performance and filling rate were verified. When material was injected in the water, it was visually checked whether material separation occurred, and it was confirmed that the filling rate was 96% or more. Comparison results with the test of LW and ITB materials was concluded that ITB can reduce the material separation by groundwater and the occurrence of tunnel cavity.

A Study on the Selection of Hydrogen Refueling Station Locations within Military Bases Considering Minimum Safe Distances between Adjacent Buildings (인접 건물 간 최소 안전거리를 고려한 군부대 내 수소충전소 위치선정 연구)

  • Dong-Yeon Kim;Hyuk-Jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.171-180
    • /
    • 2023
  • Hydrogen energy technology is gaining importance in the era of the Fourth Industrial Revolution, offering military advantages when applied to military vehicles due to its characteristics such as reduced greenhouse gas emissions, noise, and low vibration. Korea's military has initiated the Army Tiger 4.0 plan, focusing on hydrogen application, downsizing, and AI-based smart features. The Ministry of National Defense plans to collaborate with the Ministry of Environment to expand hydrogen charging stations nationwide, anticipating increased deployment of military hydrogen vehicles. However, considering the Jet Fire and VCE(Vapor Cloud Explosion) nature of hydrogen, ensuring safety during installation is crucial. Current military guidelines specify a minimum safety distance of 2m from adjacent buildings for charging stations. Scientific methods have been employed to quantitatively assess the accident damage range of hydrogen, proposing a minimum safety distance beyond the affected area.

Study on drawing up the integration method between combined information communication network design and information management system for Transportation-Power-Infrastructures on the electric vehicle (전기자동차 교통-전력-시설 통합 정보통신 네트워크 설계 및 정보관리시스템 간 연계 방안 수립에 관한 연구)

  • Choi, Yoon-Gun;Hwang, Tae-Hong;Kim, Geon-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.60-70
    • /
    • 2011
  • Vehicle location detection and wireless communication method have be designed along the same lines as GPS, CDMA and WLAN, which is based upon the selecting factors such as state-of-art technology trend, accuracy, stability, and economic feasibility, in order to select the optimum method of information communication networks for integrated "Transportation-Power-Facilities" on the electric bus. In addition, the key features of each alternative for an efficient linkage have been review and the integration methodology for linking among Transportation Charging Center, Transportation(ITS, BIS) Center and smart Grid Center has been drawn up based on a technical level of difficulty of each alternative, political and administrative difficulties, and expense justification.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.