• Title/Summary/Keyword: 충격가진

Search Result 230, Processing Time 0.023 seconds

A Study on Vibration & Noise Reduction of Fast Back Feeding Device for Manufacturing Process (제조공정용 Fast Back 이송장치 진동·소음 저감에 관한 연구)

  • Han, Doo-Hee;Lee, Seung-Hun;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.642-648
    • /
    • 2019
  • This paper presents a fast back-type transfer device for snack food processing that uses the inertia of transferred material. A conventional conveying system is a drive system that uses a belt conveyor and mechanical crank, which generate noise and vibration and cause environmental pollution. Vibration and noise are reduced in the proposed fast back feeding device by using a counterweight. The crank drive unit was replaced with a linear servomotor, and an equilibrium device was designed to balance the force due to acceleration. This makes it is possible to adjust the forward and backward speed and acceleration through PLC control. A vibration damper device offsets the vibration force of the periodic shock form. The main cause of the vibration was identified through vibration analysis, and reduction measures were established. We verified the effectiveness of the vibration by making a prototype and performing about 10 vibration tests. Because no mechanical transducer is needed, energy loss, noise, and vibration do not occur, and the operating speed is not limited.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Low-Temperature Characteristics of Type 4 Composite Pressure Vessel Liner according to Rotational Molding Temperature (타입 4 복합재 압력용기 라이너의 회전 성형 온도에 따른 저온 특성)

  • Jung, Hong-Ro;Park, Ye-Rim;Yang, Dong-Hoon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • Low-temperature characteristics according to internal temperature conditions during rotational molding of Type 4 pressure vessel liners were studied in this paper. Since rotational molding has a sensitive effect on the formability of the liner depending on the temperature conditions, the temperature conditions for the polyamide used should be accurately set. The structural changes of polyamide as the liner material was analyzed the surface by atomic force microscope (AFM), and the crystallinity measured with a differential scanning calorimeter (DSC) is used to evaluate the change of the mechanical strength value at low temperature. In addition, the formability of the liner was confirmed by observation of the yellow index inside the liner. As a result, as the melting range of the internal temperature becomes wider, the yellow index shows a lower value, and the elongation and impact characteristics at low temperatures are improved. It was also confirmed that the structure of the polyamide was uniform and the crystallinity was high by AFM and DSC. These experimental results contribute to the improvement of characteristics at low temperatures due to changes in temperature conditions during rotational molding.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Propagation Analysis of Dam Break Wave using Approximate Riemann solver (Riemann 해법을 이용한 댐 붕괴파의 전파 해석)

  • Kim, Byung Hyun;Han, Kun Yeon;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.429-439
    • /
    • 2009
  • When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions (3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정)

  • Yena Lee;Tae Hee Lee;Dawon Park;Youngjun Choi;Jung-Wuk Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.355-364
    • /
    • 2023
  • The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.

A Kinematic Analysis on Lateral Break-Fall of Security Nartial Arts (경호무도 측방낙법의 운동학적 분석)

  • Kim, Yong-Hak;Lee, Sae-Hwan
    • Korean Security Journal
    • /
    • no.24
    • /
    • pp.53-66
    • /
    • 2010
  • This study aims to analyze kinematic variables regarding lateral break-fall quantitatively that can protect the body, prevent the injury and minimize the impact. To this end, three Hapkido, judo athletes of H University with experience of over 5 years were selected. Test was conducted through three dimensional image analysis by checking the time and order the subjects reach a mat. In this study, lateral break-fall was repeated five times and among them, the best movement was selected. The picture shot with high-speed camera was analyzed by using KWON3D ver. 3.1 program through three dimensional coordinate calculation based on DLT method and smoothing process of data. Study results were as follows. 1. With respect to time variables shown in lateral break-fall of A, B, C athletes, there is small difference in temporal variables and in the order the body reaches a mat. With respect to average value, hand is ($0.94{\pm}0.20$), elbow ($0.97{\pm}0.17$), hip ($0.97{\pm}0.18$), back ($0.98{\pm}0.18$), and shoulder ($1.04{\pm}0.16$). Time variable the body reaches a mat in lateral break-fall is in hand, elbow, hip, back and shoulder. 2. With respect to moving distance variables shown in lateral break-fall of A, B, C athletes, hand is ($34.33{\pm}34.59$), elbow ($52.00{\pm}26.06$), hip ($70.00{\pm}15.72$), back ($153.67{\pm}17.93$), and should ($130.67{\pm}29.02$). The fact that this study contributed to improving security martial arts technique and protecting the body by understanding the principle of lateral break-fall movement is of significance. In addition, the fact that this study provided systematic basic data for improving security martial arts technique is significant.

  • PDF

Effects of Oxygen-Derived Free Radicals on Brain Microsomal $Na^+-K^+-ATPase$ Activity (산소유리라디칼이 뇌조직 미크로좀분획의 $Na^+-K^+-ATPase$ 활성도에 미치는 영향)

  • Oh, Sae-Moon;Son, Young-Sook;Choi, Kil-Soo;Lim, Jung-Kyoo;Chung, Myung-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.1-14
    • /
    • 1982
  • The effects of xanthine-xanthine oxidase reaction on brain microsomal $Na^+-K^+-ATPase$ activity were studied to see possible involvement of oxygen free radicals in pathologic change occurring in ischemic state of CNS accompanied by cerebral vascular occlusion or impact injury. When microsomal fraction was incubated with xanthine ana xanthine oxidase, $Na^+-K^+-ATPase$ activity of the fraction was markedly inactivated (80% inactivation) whereas btssl $Mg^{++}-ATPase$ was much less sensitive (less than 10% inactivation) compared to that of $Na^+-K^+-ATPase$. The inactivation was observed only in the presence of both xanthine and xanthine oxidase, not either of them alone, and the extent of inactivation was dependent on the concentration of xanthine. In an attempt to determine which of the oxygen species was responsible for the inactivation, the ability of various scavengers to overcome the inactivation was tested. Superoxide dismutase, catalase and 1,4-diazabicyclo(2,2,2)octane were shown to reverse the inactivation of the ATPase in dose-dependent manner. In contrast, mannitol as well as other $OH{\cdot}$quenchers were ineffective in limiting oxygen radical-induced inactivation. Thus $O_{\bar{2}}{\cdot},\;H_2O_2$ and $^1O_2$ were implicated to be mediators involved in the inactivation. Since oxygen radicals are suspected as being a cause of the peroxidative damaging process in train ischemia, the ATPase inactivation by oxygen radicals may be a possible contributing factor which gives rise to functional derangement of nerve cells observed in the pathologic process.

  • PDF

Simple Formulae for Buckling and Ultimate Strength Estimation of Plates Subjected to Water Pressure and Uniaxial Compression (수압(水壓)과 압축력(壓縮力)을 받는 평판(平板)의 좌굴(挫屈) 및 최종강도(最終强度) 추정식(推定式))

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.69-80
    • /
    • 1988
  • This paper proposes simple formulae for buckling and ultimate strength estimation of plates subjected to water pressure and uniaxial compression. For the construction of a formula for elastic buckling strength estimation, parametric study for actual ship plates with varying aspect ratios and the magnitude of water pressure is carried out by means of principle of minimum potential energy. Based on the results by parametric study, a new formula is approximately expressed as a continuous function of loads and aspect ratio. On the other hand, in order to get a formula for ultimate strength estimation, in-plane stress distribution of plates is investigated through large deflection analysis and total in-plane stresses are expressed as an explicit form. By applying Mises's plasticity condition, ultimate strength criterion is then derives. In the case of plates under relatively small water pressure, the results by the proposed formulae are in good agreement compared with those by other methods and experiment. But present formula overestimates the ultimate strength in the range of large water pressure. However, actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming etc.. Therefore, it is considered that present formulae can be applied for the practical use.

  • PDF

A Study on the adequate Aggregate Selection of the Exposed Aggregate PCC Pavements (골재노출 콘크리트포장의 적정 골재 선정에 대한 연구)

  • Kim, Young-Kyu;Chae, Sung-Wook;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-127
    • /
    • 2007
  • The exposed aggregate PCC(EAP) pavements have been successfully used in Europe and Japan as low-noise pavements. Coarse aggregate are exposed on the pavement surface texture of EAP by removing mortar of surface. The pavement surface texture should maintain not only low-noise characteristic but also adequate skid resistance level during the performance period. Skid resistance decreased with wearing and polishing of tire and pavement surface due to the repetition of tire-pavement contact. Since the tires mainly contact the exposed coarse aggregate, the shape and rock type of coarse aggregate significantly influence wearing and polishing of EAP pavements. The test for resistance to abrasion coarse aggregate by use of the Los Angeles machine(KS F 2508) and the method of test for resistance to abrasion coarse aggregate by use of the Accelerated Polishing Machine(ASTM D 3319-90) are generally used to evaluate polishing characteristics of aggregate. In this study, polishing of coarse aggregate of different five rock types were evaluated by KS F 2508(LA abrasion test) and ASTM D 3319-90(PSV method). The results of LA abrasion test and PSV method were contrary to each other. Since LA abrasion test is estimated the quantity of abrasion by the impact of aggregate, it may not be adequate to evaluate the polishing of aggregate by the repetition of tire. In the case of PSV method, the resistance of polishing is estimated the skid resistance variation of polished aggregate after repetition of tire. The PSV method is adequate for the evaluation on polishing of coarse aggregate. From the test results of PSV method, it was founded that rock type, specific gravity, coarse aggregate angularity, flat or elongated particles in coarse aggregate are significant to the resistance characteristic of coarse aggregate.

  • PDF