DOI QR코드

DOI QR Code

MD Simulation of PLA-PEG Composites for Additive Manufacturing

적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation

  • Songhee Ham (Department of Physics and Chemistry, Korea Military Academy) ;
  • Youngjoon Jeon (Department of Civil Engineering and Environmental Sciences, Korea Military Academy)
  • 함송희 (육군사관학교 물리.화학과) ;
  • 전영준 (육군사관학교 토목.환경학과)
  • Received : 2023.03.21
  • Accepted : 2023.04.28
  • Published : 2023.06.10

Abstract

Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

폴리젖산(poly-lactic acid, PLA)은 옥수수 분말이나 sugar beets와 같은 천연 재료로부터 얻어지는 생분해성 및 생체적 합성을 가진 친환경적인 재료로 각광받고 있으며, 특히 적층가공에서 흔히 사용되는 석유로부터 추출된 ABS (acrylonitrile butadiene styrene)의 대체재로 주목받고 있다. 그러나, PLA의 유리 전이 온도는 60 ℃로 비교적 낮아 열 저항성이 떨어질 뿐만 아니라 PLA는 취성이 강해 충격이 가해졌을 때 부러지는 현상이 발생한다는 단점이 있다. 따라서 PLA의 결정화도 및 연성을 증가시켜 단점을 보완하기 위해 젖산에 조핵제 또는 가소제 등을 첨가하는 연구가 활발히 진행되어 왔다. PEG (polyethylene glycol)은 PLA 사슬에 유동성을 주기 위해 가장 많이 연구된 가소제이나, PLA와 혼화되었을 때 자체적인 결정화가 진행되어 상온에서도 혼화물이 불안정해지며 상분리가 일어나게 된다. 따라서 PLA-PEG의 최적의 혼화 비율을 찾는 것이 필수적이다. 이번 연구에서는 가소제인 PEG를 첨가하였을 때 예측되는 두 물질 간의 혼화도를 Materials Studio 프로그램의 Molecular Dynamics를 이용하여 분석하였다. 특히, 젖산과 PEG의 함량 변화에 따른 혼화도와 젖산의 거울상 이성질체인 L-lactic acid 및 D-lactic acid의 함량에 따른 혼화도를 거시적인 관점에서 예측하였다.

Keywords

Acknowledgement

본 논문은 육군사관학교 화랑대연구소의 2023년도 논문게재지원비지원, [22-22] 미지테러물질 추적⋅확인⋅제거 방법 마련(II) (환경부화학물질안전원) 연구의 Materials Studio 장비 지원을 받아 연구되었음.

References

  1. B. Choi and J. Yoo, How Will the Emerging Technologies Change Industrial Landscapes?: Forecasting the Future and Its Strategic Implications. Vol. 3: 3D Printing. Policy Research Report 2015-12-03, Science and Technology Policy Institute (STEPI), Korea (2015).
  2. K. Coasey, K. Hart, E. Wetzel, D. Edwards, and M. Mackay, Nonisothermal welding in fused filament fabrication, Addit. Manuf., 33, 101140 (2020).
  3. T. Letcher and M. Waytashek, Material property testing of 3d-printed specimen in pla on an entry-level 3d printer, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2(12). November 14-20, Montreal, Canada (2014).
  4. S. Saeidlou, A. Huneault, H. Li and C. Park, Poly(lactic acid) crystallization, Prog. Polym. Sci., 37, 1657-1677 (2012). https://doi.org/10.1016/j.progpolymsci.2012.07.005
  5. JJ. Kolstad, Crystallization kinetics of poly(L-lactide-co-meso-lactid), J. Appl. Polym. Sci., 62, 1079-1091 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1
  6. A. Takhulee, Y. Takahashi, and V. Vao-soongnern, Molecular simulation and experimental studies of the miscibility of polylactic acid/polyethylene glycol blends, J Polym Res, 24, 1-10 (2017). https://doi.org/10.1007/s10965-016-1163-6
  7. Dassault Systemes, BIOVIA Materials Studio - An integrated, multiscale modeling environment, Academic Research Suite, San Diego, CA, USA (2022). https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio.
  8. Dassault Systemes, BIOVIA, Modules Tutorials Materials Studio 2017, 281-285, San Diego, CA, USA (2017). https://globex.coe.pku.edu.cn/file/upload/201807/16/1259524417.pdf.
  9. S. Sharma, Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio, Lammps and Gromacs - A Volume in Micro and Nano Technologies, Elsevier, Kidlington, UK (2019).
  10. C. Jeon, J. Kim, and H. Jeong, Which thermostat/barostat algorithm should we choose for our molecular dynamics simulation?, Physics and High Technology, 21, 13-18 (2012).
  11. L. Aliotta, P. Cinelli, M. Coltelli, M. Righetti, M. Gazzano, and A. Lazzeri, Effect of nucleating agents on crystallinity and properties of poly(lactic acid)(PLA), Eur. Polym. J., 93, 822-832 (2017). https://doi.org/10.1016/j.eurpolymj.2017.04.041
  12. M. Rubinstein and R. Colby, Polymer Physics, 137-164, Oxford University Press, NY, USA (2003).
  13. P. Hiemenz and T. Lodge, Polymer Chemistry, 247-283, CRC Press, NY, USA (2007).