• Title/Summary/Keyword: 축계진동해석

Search Result 87, Processing Time 0.027 seconds

Seismic Behavior of Rotation Shaft System at Start-up (기동시 회전축계의 지진응답 거동)

  • 김상환
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • A rotating shaft system subjected to seismic motions has been investigated for the various operating modes at start-up. During an earthquake excitation, the rotor may hit the stator of machines due to the excessive deformation of shaft, and thus the response of rotating shaft system of which foundation is supported by the vibration isolation devices has been simulated. In order to examine the transient response of the rotating shaft system at the start-up to both the various operating conditions and the seismic excitation simultaneously, nonlinear equations of motion are derived and solved numerically using Runge-Kutta method. The response of the rotating shaft system is calculated according to the operating modes as recommended by the machine and the system parameters such as the spring stiffness of isolation devices.

  • PDF

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

Vibration Analysis and Reduction of the Geared Transmission System in a Lathe Gear Box (선반 기어박스의 기어열 - 축계 진동 해석 및 저감에 관한 연구)

  • 최영휴;박선균;배병태;정택수;김청수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.435-440
    • /
    • 2001
  • In this study, torsional and lateral vibrations of a gear box transmission system were analyzed theoretically using some mathematical models and examined to determine the causes of its excessive vibrations. As the results, it was found there exist possibility of resonance between gear mesh frequencies and lateral vibration mode of the transmission shaft during the third shifting mode operation. In order to avoid this resonance, we proposed changing the arrangement of gears on the transmission shaft. The measured vibration levels of the improved gear box were dramatically reduced. These results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF