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Seismic Behavior of Rotating Shaft System at Start-up
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ABSTRACT

A rotating shaft system subjected to seismic mofions has been investigated for the various operating modes at start-up.
During an earthquake excitation, the rotor may hit the stator of machines due to the excessive deformation of shoft, and
thus the response of rotating shaft system of which foundation is supported by the vibration isolation devices has been
simulated., In order to examine the tfransient response of the rotating shoft system af the start-up to both the various
operating conditions and the seismic excitation simultaneously, nonlinear equations of motion are derived and solved
numerically using Runge-Kutta method. The response of the rotating shaft system is calculated according fo the operating
modes as recommended by the machine and the systfermn parameters such as the spring stiffness of isolation devices.
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1. Introduction

The rotating shaft systems are widely
used in a variety of machines ranging from
the small precession motor to the turbine-
generator in power plants. For the small
rotating machines the critical speed is
greater than the operating speed, and thus
the stability at start-up is not important.
However the critical speed of the large
rotating machine are less than the operating
speed, and the stability problem is occurred
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because the machine speed should pass the
critical speed at start-up. In addition to that,
if the machine foundation is installed on the
vibration/seismic  isolation  device, the
behavior of the rotating shaft system at
start-up could be investigated corresponding
to the operating mode and the seismic
excitation. Also it is necessary that the
isolation device should be designed by
considering the characteristics of earthquake
and of machines and that the response of
supporting  structure  including isolation

device be accurately predicted by a proper
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method.

In order to predict the transient response
of the rotating shaft system, a set of five
nonlinear differential equations of motion
have been derived from the kinetic and the
potential energies of system. There are two
coordinate systems as shown in Fig. 1. One

is x, and y, coordinate of which origin is

on the ground, the other is x and
originated at bearing or foundation. Actually

the coordinate x,—y, stands for the

seismic ground motion. As a result the
rotating shaft system is considered to be five
degree of freedom system and the governing
equation of motions have five variables. Two
represents the plane motion of rotating disk,
two represent the plane motion of
foundation, and one represents the rotation
angle of rotor.

The transient motion of the rotating shaft
system at start-up can be investigated
according to the operating modes. An
operating mode can be determined by the
torque input. The reason is that the angular
acceleration of rotor is proportional to
torque. In the study, two-step operation
mode is adopted to investigate the dynamic
response of the rotating shaft system under
both the imbalance, which is defined by the
eccentricity(e) in Fig. 1, and the seismic
ground motion. The unbalance is given by
the eccentricity from the center of rotation.
The first step is from zero to speed between
0.8 and 09 of the critical speed( w., ), which

is called the intermediate speed, and the
second step is from the end of the first step
to the normal operating speed of machine
(Fig. 2). More torque may be required to
pass the critical speed as fast as possible. If

the shaft rotates near the critical speed, the
amplitude of shaft vibration increases very
fast and the system finally may be in
danger.

Thus, the torque rate at the second step is
greater than that of the first step. If the
torque input at the second step were not
enough, the rotating speed might not reach
the operating speed and the shaft rotates
near the critical speed, which is called the
phenomena of limited power supply. Since
the machine speed is near the critical speed,
the amplitude of rotor is so large that the
rotor hits the stator.

For the low-tuned foundation, the vertical
fundamental frequency is much lower than
the running speed of machine and the ratio
of the machine speed to the fundamental
frequency of foundation is greater than 3.
But the fundamental frequencies of the
low-tuned foundations generally coincide
with the predominant frequency range of
earthquake, and thus the fundamental
frequency of foundation with seismic
isolation device should be less than 1 Hz.
Therefore in this study the spring stiffness
of isolation has been treated as a parameter.

7 ‘ - I

Fig. 1 Coordinate system of rotating shaft :

@ = precession angle, = rotating angle
C= center of rotation, e= eccentricity
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Fig. 2 Two-steps operating mode
2. Equations of Motion

The position vector to the center of rotor
as shown in Fig. 1 can be expressed as

rml/F: I'()/F+ I‘C/O+ rmx/() (1)

where 1 9F

is the position vector to
bearing housing relative the fixed reference
frame and can be expressed in terms of the

seismic ground motion as

r%F=x,n,+y,n, 2

where n,, n, are the unit vectors in

the directions of «x, and y,, respectively.
r “? is the position vector of rotating
center relative the bearing housing or
foundation,

r%=x, n,+y n, 3
and the position vector from the elastic

center to the mass center is given

r"/“=c¢cosfn,+esindn, (4)
in which the rotation angle ¢ is measured
from the x-axis and e is the eccentricity of

mass center to the rotation center.

Substitution of Egs. (2), (3) and (4) into
Eq.(1) may be expressed by

r "/ =(x, +x +ecos6) n,

©)
+(y,+y, +esind n,

Similarly the position vector of the
foundation of machine can be expressed by

rmg/F:(xg+x2)nx—|—(yg+y2)l'ly (6>

The velocities of masses w;, and m, can
be obtained by differentiating Eq. (5) and (6)
with respect to time and can be written as

ml/F:(x'g_f_;él —efsinfd) n,

)

+(y,+ v +ebcosd) n

v = (B n (et 3 n, (®)

The total kinetic energy of system is
given

MIE Ly ™Iy

~
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+—rl)m2( v I VMZ/F)-F—%' lo-w

where m; and m, are the masses of rotor

and of foundation including machine,
respectively.

The potential energy of system is
composed of the strain energy due to the
deformation of shaft, the vertical position of
rotor center and the deformation of isolation

device such as spring.

V=l (=) + Ay (1 = 3)7) )

[kxgxg +/ey2y§]-l— m, gy, +esin §)

where £k, and k4, can be obtained from
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the flexibility of shaft. The stiffness of shaft
is determined by assuming that the shaft is
simply supported at bearings and the rotor
is at the mid-point of shaft. If the
cross-section of shaft is circle, the horizontal
stiffness k., should be the same as the
vertical stiffness k,,, k., =+k,;. And the
horizontal and vertical stiffnesses of isolation
devices beneath foundation bed are denoted
by k., and k,,, respectively. The
gravitational acceleration in the last term is
denoted by the symbol g.

The total dissipation energy can be

written as
D= D1 -+ D2 .

The dissipation energy caused by the
isolation devices is given by

D}I_%'[szﬂég"f‘cyg)}z] (11)

where ¢,, and ¢,, are the damping
coefficients of isolation device in the
direction of x and y, respectively. The
dissipation energy caused by the internal
rotor friction can be obtained from the force
relationship and is given by"”

(%= 2%) (=) 2 de
5 + 0p P

Dz:Cl

where ¢, is the damping coefficient

associated with the interface between shaft
and bearing, and ¢ is the rotor attitude

angle defined as

1 X1 X

= tan
¢ Y1 — ¥

¢ is the rotor precession rate, and

p=V (x; —x3)2 + (3 —)°

Then the dissipation due to rotor friction
can be written as

| c W
+ 00 (v — v )y = x2) — (21 — 02 W3y — ¥2)1]

Dy =

Thus when the rotor precession rate is
zero, the internal friction dissipation energy
is assumed to be the conventional viscous
damping. It is very important to note that
only in the case when the dissipation
function has the special characteristic of
being dependent upon the rotor precession
rate, the self-excited whirl instability can be
developed.

The governing equations of motion of the
system can be obtained from Lagrange’s
equation, which states

d{_ oL oL oD
_d 3L\ _ ) _ 13
dt( a‘Ir) o0, " ag, 1)

where L=T-1V, gq,is the generalized
coor- dinate, and F,, is the generalized

force.
Application of the above equation (13) for

the five generalized coordinates, x;, y;, x5,

vo and ¢, yields the following equations;

myx, + X, — e sin 88— e cos 06 ‘
Fo [ —x)+ 8y, —y)]+h(x, —x)=F,

My v, + ¥y + e cos 80— e sin 96%)
+c1[(y1\y3)+5’(x1 'Xg)]+kl(y1 4y2)=Fy]

mg(f;+ X))+ cegto o [ (2, — xp) (14)
+ 0y, =y )]+ by + ko — kit =F,,

mg'(7é;+3.;2)+c,\v23}2+cl [y, =)
+ 00y — )]+ (ky + o)y — vy = Fy
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(I+m, &)0—m, e(;%-l + x,) sin 8+ my ey, + v,) cos @
—my e(x, + x.;) cos - mye(y, + .y;,)si.n 0

- [ (X1 — Xy )(yl - yz)*(y\ '",Vz)(?ﬁ - sz)]

+ my egcos 0=F,

Now the equations of motion are solved

numerically by using Runge-Kutta method.
3. Numerical Example

In order to verify the validity of Eq. (14)
and to investigate the effectiveness of
isolation spring for the rotating shaft system
under seismic motion, the specifications of
an example system are listed in Table 1. As
mentioned before the spring constant of
isolation device and the torque in Eq. (14)
are treated as the system parameters.

At first the rotating speeds are calculated
according to the constant torque rates. For
convenience the operating mode at start-up
is divided into two steps with respect to the

ratio of machine speed( w)to the critical

speed( w,, =V k;/m;). The speed range of
the first step is from 0 to the ‘intermediate
speed” which is between 0.8 and 0.9, and
the second step starts from the intermediate
speed to the operation speed. The
intermediate speed in this study is selected
to be 085(2). The torque rate of the first
step in the simulation is usually less than
that of the second step because the rotating
speed should pass the critical speed as fast
as possible.

Fig. 3 shows that the rotation speed and
the stability are affected by the torque rate
of the second step. If the torque rate is not

G)

sufficient”, the machine speed reaches its

Table 1 Specifications of example system

symbol description numerical value
mass of rotor
"y disk 2,000kg
mass moment R
I o —cm”
of inertia 8,000 kg — om
ki stiffness of shaft| 5.0x 107 kg/cm
mass of
o ) 10
e foundation "
Cez _ _Cy» damping 0.075
"y my coefficient '
e eccentricity 0.01 em
N time increment | 1.0%10 % sec
@, critical speed kB -
W oper operation speed 3w,

operating speed after the several cycles of
oscillations near the critical speed as shown
in Fig. 3. The number of oscillation, which
can be used as the measure of the system
instability, decreases with increasing the
torque rate on the second step. Although
the speed reaches the operating speed, the
displacement of rotor during oscillation
increases so great that the rotor hit the
stator and thus the rotating machine are not

going to perform its function properly.
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Speed ratic

Time(sec)

Fig. 3 Rotating speed at start-up corresponding to
torque rate of second step

Also the speed of rotation has been
calculated according to the fundamental
horizontal frequencies, f, = %m
of isolation spring, and Fig. 4 shows that the
number of oscillations decreases with
increasing the stiffness of isolation spring. In
simulation the vertical stiffness of isolation
spring is considered to be 1.5 times of the

horizontal stiffness, 4%,,=1.5k,,. Because

the vertical static deflecion in the
gravitational field is 24.8 cm for the vertical
natural frequency of 1 Hz, the vertical
stiffness is taken greater than the horizontal

stiffness.

speed

time(sec)

Fig. 4 Rotating speed at start-up corresponding to
stiffness of isolated spring

The isolated rotating system under Taft
earthquake(Fig. 5) has been simulated with
respect to the stiffness of isolation spring.
The relations between the fundamental
frequencies and the maximum horizontal
displacements under the horizontal ground
motion are shown in Fig. 6. As expected,
the maximum displacements of rotor and
foundation decrease with increasing the
stiffness of isolation spring, but in Fig. 7 the
relative displacement of rotor to foundation
is not affected by the spring stiffness. The
reason is that the ratio of the machine
speed to the fundamental frequency is much

large as the low-tuned spring foundation.

acceleration(gal)

100

timeqsee)

Fig. 5 Time history of taft earthquake

Displacemen
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Fig. 6 Maximum displacement of system correspon-
ding to stiffness of isolation spring
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Fig. 7 Relative displacement of rotor to foundation
with respect to isolating spring

Finally, the seismic response of rotating
shaft system under the horizontal ground
motion has been simulated according to the
time lag between the arrival of the seismic
motion and the start-up, and the maximum
displacement of rotor disk with respect to
the time lag is shown in Fig. 8. It can be
determined that the time lag does not affect
the seismic behavior of rotor system.

S rotor aisk
3 A (e ey )

e B e e S e S e e

~7 foundation

max. displ.(cm)
o

time lag{sec)

Fig. 8 Maximum horizontal displacement correspon-
ding to time lag

4. Conclusion

The transient response of rotating shaft
system having isolation device under an
earthquake at start-up has been numerically
simulated after deriving the equation of
motion. Considering the simulated results,
the seismic motion may not affect on the
behavior of rotating system if the operating
speed is much greater than the fundamental
frequency of isolation device. However, the
equation of motion derived can be
appropriately used to simulate the transient
response and to design the foundation of

rotating machine.
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