• Title/Summary/Keyword: 추계학적모의

Search Result 123, Processing Time 0.03 seconds

Stochastic Simulation for Reservoir inflows to Improve Drought Mitigation Policies of Water Supply Infrastructures (물 공급 시설의 향상된 가뭄 대응전략을 위한 댐 유입량 모의 기법 제시)

  • Ji, Sukwnag;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.172-172
    • /
    • 2021
  • 주된 물관리 시설의 신뢰성 있는 운영 계획의 수립을 위하여 충분한 길이의 유입량을 확보하는 것은 중요하나 현실적으로 제한된 관측 자료만 존재한다. 본 연구에서는 충분한 길이의 유입량을 생성하기 위하여 유입량의 모의 방법론을 제안하고자 한다. 제안하는 모형은 크게 3가지의 방법론을 기반으로 한다. 첫 번째는 연 유입량과 월 유입량의 생성단계로 Wavelet 기반으로 Autoregressive-moving-average(ARMA)을 적용할 것이다. 다음으로 일 유입량의 생성에 있어서 과거 관측값을 기반으로 한 Z-Score-based jittering 방법론을 적용할 것이다. 이렇게 각각 생성된 연 유입량, 월 유입량 그리고 일 유입량을 K-Nearest Nedighbors (K-NN) 방법론을 이용하여 최종 유입량을 결정하고자 한다. 생성된 유입량의 유용성을 판단하기 위하여 본 연구에서는 단기와 장기에서의 시계열의 지속성을 허스트 지수와 상관계수를 사용하여 검증할 것이며 이를 과거 관측치와 비교하고자 한다. 또한 각각의 연, 월, 일별의 기준으로 주요 통계치인 평균과 표준편차를 과거 관측 시계열의 통계치와 비교하여 그 유용성을 판단할 것이다.

  • PDF

A decision-centric assessment of flood risk and supply reliability at a multi-purpose reservoir under climate change (의사결정중심 다목적댐 이치수 안전도 기후변화 영향평가)

  • Kim, Daeha;Kim, Eunhee;Lee, Seung Cheol;Kim, Eunji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.112-112
    • /
    • 2022
  • 본 연구에서는 2005-2020년 용담댐의 운영방식이 기후변화에 얼마나 취약한 지 홍수위험과 이수 안전도 지표를 중심으로 평가하였다. 유입량 모의를 위해 GR6J 강우-유출 모형을 사용했고, 댐 운영룰 추출을 위해 Random Forests 모형을 관측자료에 적합시켰다. 294개의 추계학적 기후스트레스 시계열을 GR6J 모형에 입력해 일유입량을 모의한 후 Random Forests 모형으로 방류량과 저수량을 추정하여 연최대일방류량과 공급신뢰도를 분석하였다. 공급신뢰도는 평균강수량 변화에 주로 영향을 받는 것으로 나타났지만 연최대방류량은 평균강수량과 강수변동성 변화에 모두 민감하게 반응하는 것을 알 수 있었다. 2021-2040년 용담댐 저수량은 평균강수량 증가로 인해 공급신뢰도는 과도하게 상승할 것으로 전망되었다. 하지만 강수변동성 증가 인해 20년 빈도 연최대방류량은 가파르게 상승해 댐 하류지역의 홍수위험은 더 가중될 것으로 전망되었다.

  • PDF

GCM Scenario Downcsaling Method using Multi-Artificial Neural Network and Stochastic Typhoon Model (다지점 인공신경망과 추계학적 태풍모의를 통한 GCM 시나리오 상세화기법)

  • Moon, Su-Jin;Kim, Jung-Joong;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.276-276
    • /
    • 2012
  • 일반적으로 기후변화영향에 관한 연구수행을 위해 전지구기후모형(GCM; Global Climate Model)이 사용되고 있다. 하지만 GCM은 공간해상도(Spatial resolution)가 거칠기 때문에 수문학 분야에서 주로 사용되는 유역규모의 지역적인 스케일특성과 물리적 특징을 표현하는데 한계가 있다. 또한 GCM 기후변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67% 이상이 집중되는 계절성을 반영하지 못하고 있으며, 높은 불확실성을 보이고 있다. 본 연구에서는 GCM 기반의 다지점 인공신경망기법을 적용한 상세화(Downscaling)를 실시하였다. GCM의 24개 2D변수에 대한 주성분분석을 실시하여 신경망의 학습인자로 사용하였으며, 학습, 검증 및 예측기간은 각각 1981~1995년, 1996~2000년, 2011~2100년으로 A1B 시나리오를 대상으로 상세화를 실시하였다. 또한, 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline과 Projection 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다.

  • PDF

Studies on the Stochastic Generation of Synthetic Streamflow Sequences(I) -On the Simulation Models of Streamflow- (하천유량의 추계학적 모의발생에 관한 연구(I) -하천유량의 Simulation 모델에 대하여-)

  • 이순탁
    • Water for future
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1974
  • This paper reviews several different single site generation models for further development of a model for generating the Synthetic sequences of streamflow in the continuous streams like main streams in Korea. Initially the historical time series is looked using a time series technique, that is correlograms, to determine whether a lag one Markov model will satisfactorily represent the historical data. The single site models which were examined include an empirical model using the historical probability distribution of the random component, the linear autoregressive model(Markov model, or Thomas-Fiering model) using both logarithms of the data and Matala's log-normal transformation equations, and finally gamma distribution model.

  • PDF

Development of Stochastic Downscaling Method for Rainfall Data Using GCM (GCM Ensemble을 활용한 추계학적 강우자료 상세화 기법 개발)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Lee, Dong-Ryul;Yoon, Sun-Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.825-838
    • /
    • 2014
  • The stationary Markov chain model has been widely used as a daily rainfall simulation model. A main assumption of the stationary Markov model is that statistical characteristics do not change over time and do not have any trends. In other words, the stationary Markov chain model for daily rainfall simulation essentially can not incorporate any changes in mean or variance into the model. Here we develop a Non-stationary hidden Markov chain model (NHMM) based stochastic downscaling scheme for simulating the daily rainfall sequences, using general circulation models (GCMs) as inputs. It has been acknowledged that GCMs perform well with respect to annual and seasonal variation at large spatial scale and they stand as one of the primary sources for obtaining forecasts. The proposed model is applied to daily rainfall series at three stations in Nakdong watershed. The model showed a better performance in reproducing most of the statistics associated with daily and seasonal rainfall. In particular, the proposed model provided a significant improvement in reproducing the extremes. It was confirmed that the proposed model could be used as a downscaling model for the purpose of generating plausible daily rainfall scenarios if elaborate GCM forecasts can used as a predictor. Also, the proposed NHMM model can be applied to climate change studies if GCM based climate change scenarios are used as inputs.

Finite Element A nalysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel:I.Theory and Stability Analysis (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 :I.이론 및 수치안정성 해석)

  • Han, Kun-Yeun;Park, Jae-Hong;Lee, Jong-Tae
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.167-178
    • /
    • 1996
  • The simulation techniques of hydrologic data series have been developed for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etx. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in western USA since the early of 1980's. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and first order autoregressive model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Flood Estimation Considering Uncertainty (불확실성을 고려한 홍수량 추정)

  • Seo, Young-Min;Kim, Sung-Bum;Jang, Kwang-Jin;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1900-1904
    • /
    • 2007
  • 지금까지 수공구조물의 설계와 기존 시설의 안전도를 평가시 수문, 수리 및 경제학적 함수들에서 발생하는 불확실성을 설명하기 위하여 안전율 또는 여유고를 증가시키거나 이들 정보의 양과 질을 증가시켜 데이터베이스를 확장하고 측정오차를 최소화시키며, 전통적인 통계해석을 적용하였다. 공공의 안전을 확보하기 위하여 설계과정에 안전율 또는 여유고가 도입되었으나 이것은 단순히 보다 높은 재현기간의 적용을 의미하며, 수문현상이 가지는 추계학적 특성보다 확정론적인 근거로부터 안전설계 개념이 개발되었다. 수자원 계획시 고려되는 부하와 저항은 확정론적인 고정치가 아니라 시간에 따라 변하고 동적이며, 무작위적이므로 확률 변수로서 고려되어야 한다. 이에 따라 최근 수자원 계획과정에서 불확실성 해석에 의한 위험도 분석 개념이 도입되고 있으며, 특히 이상기후 및 집중호우의 빈발, 급격한 도시화로 인한 유출양상의 변화 등으로 급증하고 있는 훙수피해를 감안할 때 설계빈도의 상향조정과 같은 확정론적인 방법보다는 매개변수 또는 함수의 불확실성을 고려한 위험도 해석의 필요성이 더욱 증대되고 있는 실정이다. 따라서 본 논문에서는 수자원 계획시 입력자료 및 매개변수의 불확실성과 불확실성의 분리를 고려한 홍수량의 산정 및 각 매개변수의 영향을 평가하여 홍수위험도 해석에 있어서 모델 매개변수의 영향 규명과 처리방안을 제시하고자 한다.

  • PDF

Hydrologic Disaggregation Model using Neural Networks Technique (신경망기법을 이용한 수문학적 분해모형)

  • Kim, Sung-Won
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • The purpose of this research is to apply the neural networks models for the hydrologic disaggregation of the yearly pan evaporation(PE) data in Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model(MLP-NNM) and support vector machine neural networks model(SVM-NNM), respectively. And, for the evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. The application of MLP-NNM and SVM-NNM for the hydrologic disaggregation of nonlinear time series data is evaluated from results of this research. Four kinds of the statistical index for the evaluation are suggested; CC, RMSE, E, and AARE, respectively. Homogeneity test using ANOVA and Mann-Whitney U test, furthermore, is carried out for the observed and calculated monthly PE data. We can construct the credible monthly PE data from the hydrologic disaggregation of the yearly PE data, and the available data for the evaluation of irrigation and drainage networks system can be suggested.

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.