DOI QR코드

DOI QR Code

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models

전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성

  • Published : 2003.06.01

Abstract

From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.

대기순환모형(GCM)에 의하면 온실가스농도의 증가는 전구와 국지규모의 기후변화에 중요한 관련이 있음이 알려져 있다. GCM은 단일지점의 기상학적 순환과정을 분석하는데는 불확실성을 지니고 있기 때문에 현재로서는 축소기법이 대기순환모형(GCM)의 개발자들이 제공할 수 있는 것과 모형을 이용하여 기후영향을 평가하는 연구자들이 요구하는 것 사이의 차이점을 연계하기 위해 이용되고 있다. 본 논문에서는 통계학적 축소기법을 이용하여 국지 규모의 기후변화의 영향을 평가할 수 있는 방법을 제시하고자 하였다. 본 방법을 이용한다면 현재와 미래의 국지적 규모의 기후강제력 하에서의 지표 기상변수의 시나리오를 저 비용으로 신속하게 작성할 수 있다. 기후변화시나리오의 작성은 통계학적 회귀방법인 전이함수와 추계학적 일기발생모형을 이용하였다. 전이함수는 저해상도의 GCM 격자 변수들을 고해상도의 단일 지점의 변수들로 변환시키며, 이 변수들은 단일 지점의 특정 일 지표 기상 변수를 모의하기 위해 추계학적 일기발생 모형의 매개변수를 수정하는데 이용되었다. 본 연구에서는 YONU GCM을 이용하여 제어실험과 점증실험을 실시하여 전구규모의 기후변화시나리오를 작성하였다.

Keywords

References

  1. 김맹기 (1997). 지구 온난화에 따른 한반도 온난화와 북반구 대기 순환 패턴의 연관성. 박사학위 논문. 서울대학교
  2. 박정현 (2001). 지역 기후모형 RegCm을 이용한 동아시아 여름 몬순의 모사. 연세대학교 대기과학과 석사학위 논문
  3. 안재현, 유철상, 윤용남 (2001). 'GCM결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석.' 한국수자원학회지, 한국수문학회, 제34권, 제4호, pp. 335-345
  4. 최영진, 김정우(2001). 'YONU CGCM Tr7W12를 이용한 지구 온난화 실험 결과들의 신뢰도와 활용,' 기상학회지 학술발표논문집, pp. 149-151
  5. 한국건설기술연구원 (2000). 수자원계획의 최적화 연구(IV) ; 기후변화에 따른 수자원계획의 영향 평가. 건설교통부
  6. Bardossy, A. (1993). 'Knowledge Based Classification Of Circulation Patterns For Stochastic precipitation Modeling,' Stochastic And Statistical methods In Hydrology And Environmental Engineering, Vol. 13, pp. 19-32
  7. Benjamin, Felzer, and Preston, Heard (1999). 'Precipitation Differences Amongst GCMs Used for U. S. National Assessment,' JAWRA, Vol. 35, pp. 1327-1339
  8. Cooley, K. R., and Flerchinger, G. N., and Wight, J. R., and Hanson, C. L. (1992). 'Effect of Climate Changes On Water Supplies,' Managing Water Resources During Global Change, American Water Resources Association, pp. 185-194
  9. Cooter, E. J., and Eder, B. K., and Leduc, and Truppi, L. (1993). 'Climate Change Models And Forest Research.' Journal of Forestry, Vol. 91, pp. 38-43
  10. Dubrovsky, M. (2001). 'Interdiumal And Interannual Variability in Stochastic Daily Weather Generator.; Modeling and the Role in Agricultural And Hydroligic Studies.' 8th international Meeting on the Statistical
  11. IPCC. (1996). Climate Change 1995; Impacts, Adaptations And Mitigation of Climate Change
  12. Lauren, E. H., and Wilby, R. L., and George, h. Leavesley (2000). 'A Comparison of Delta Change And Downscled GCM scenarios for Three Mountainous Basins in the United States.' Journal of the American Water Resources Association, Vol. 36, pp. 387-397 https://doi.org/10.1111/j.1752-1688.2000.tb04276.x
  13. Lebel, T., and Delclaux, F., and Barbe, L. Le, and Polcher, J. (2000). 'From GCM scales to hydrological scales : rainfall variability in West Africa.' Stochastic Environmental Research and Risk Assessment, Vol. 14, pp. 275-295 https://doi.org/10.1007/s004770000050
  14. McCabe, G. J., and Wolck, D. M. (1999). 'General Circulation Model Simulations of Future Snowpack in the Western United States,' JAWRA, Vol. 35, pp. 1473-1484
  15. Miller, James R., and Russell, Gray L., and Van Blarcum, Scoott C. (1992). 'The Effects of Climate Change On Monthly River Runoff.' Managing Water Resources During Global Change, American Water Resources Association, pp. 175-178
  16. Miller, N. L. (1999). 'Downscaled Climate Streamflow Study of the Southwestern United States.' JAWRA, Vol. 35, pp. 1525-1537
  17. Miller, N. L., and Kim, Jin Won (1999). 'Simulation of Mean Monthly Precipitation And Streamflow in an East Asia Watershed.' Climate Variability and Carbon Management Program
  18. Miller, N. L., and Kim, Jin won (2000). 'Climate Change Sensitivity Analysis for Two California Watershed ; Addendum to Downscaled Climate And Streamflow Study of the southwestem United States,' Journal of the American Water Resources Association, Vol. 36, pp. 657-661 https://doi.org/10.1111/j.1752-1688.2000.tb04295.x
  19. Miller, N. L., and Kim, Jin won (2001). 'Coupled Precipitation-Streamflow Simulations at the GAME / HUBEX Site ; Xixian Basin.' Jounal of the Meteorolgical Society of Japan, Vol. 79, pp. 985-998 https://doi.org/10.2151/jmsj.79.985
  20. Richardson, C. W. (1981). 'Stochastic Simulation of Daily Preciptitation, Temperature and Solar radiation.' Water Resources Research, Vol. 17, pp. 182-190 https://doi.org/10.1029/WR017i001p00182
  21. Rummukainen, M. and Bringfelt, B., and Ullersting, A. (2001). 'A Regional Climate Model for Northem Europe ; Model Description and Results from the Downscaling of Two GCM Control Simulation.' Climate Dynamics, Vol. 17, pp. 339-359 https://doi.org/10.1007/s003820000109
  22. Semenov, M. A., and Barrow, E. M. (1997). 'Use of A Stochastic Weather Generation in the Development of Climate Change Scenarios.' Climate Dynamics, Vol. 35, pp. 397-414
  23. Wilby, R. L., and Hany Hassan, Keisuke Hanaki (1998). 'Statistical downscaling of Hydrometeorological variables using general circulation model output' Journal of Hydrology, Vol. 205, pp. 1-19 https://doi.org/10.1016/S0022-1694(97)00130-3
  24. Wilby, R. L., and Hay, L. E., and Leavesley, G. H. (1999). 'A comparison of downscaled and raw GCM output; implications for climate change scenarios in the San Juan River basin, Colorado' Journal of Hydrology, Vol. 225, pp. 67-91 https://doi.org/10.1016/S0022-1694(99)00136-5
  25. Wilby, R. L., and Wigley, M. L., and Conway, D. (2001). 'Statistical downscaling of GCM simualtions to Streamflow,' Journal of Hydrology, vol. 252, pp. 221-236 https://doi.org/10.1016/S0022-1694(01)00457-7
  26. Wilks, Daniel S. (1992). 'Adaptic Stochastic Weather Generation Algorithms Climate Change Studies,' Climate Change, Vol. 22, pp. 67-84 https://doi.org/10.1007/BF00143344
  27. Xuebin Zhang, and Joao Corte-Real, and Xiaolan Wanhg (1995). 'Downscaling GCM Information to Regional Scales ; A non-parametric multivariate regression approach,' Climate Dynamics, Vol. 11, pp. 413-424 https://doi.org/10.1007/s003820050084

Cited by

  1. Decision Support System for Adaptive River Basin Management: Application to the Geum River Basin, Korea vol.32, pp.3, 2007, https://doi.org/10.1080/02508060708692220