Proceedings of the Korea Water Resources Association Conference (한국수자원학회:학술대회논문집)
- 2012.05a
- /
- Pages.276-276
- /
- 2012
GCM Scenario Downcsaling Method using Multi-Artificial Neural Network and Stochastic Typhoon Model
다지점 인공신경망과 추계학적 태풍모의를 통한 GCM 시나리오 상세화기법
- Published : 2012.05.16
Abstract
일반적으로 기후변화영향에 관한 연구수행을 위해 전지구기후모형(GCM; Global Climate Model)이 사용되고 있다. 하지만 GCM은 공간해상도(Spatial resolution)가 거칠기 때문에 수문학 분야에서 주로 사용되는 유역규모의 지역적인 스케일특성과 물리적 특징을 표현하는데 한계가 있다. 또한 GCM 기후변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67% 이상이 집중되는 계절성을 반영하지 못하고 있으며, 높은 불확실성을 보이고 있다. 본 연구에서는 GCM 기반의 다지점 인공신경망기법을 적용한 상세화(Downscaling)를 실시하였다. GCM의 24개 2D변수에 대한 주성분분석을 실시하여 신경망의 학습인자로 사용하였으며, 학습, 검증 및 예측기간은 각각 1981~1995년, 1996~2000년, 2011~2100년으로 A1B 시나리오를 대상으로 상세화를 실시하였다. 또한, 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline과 Projection 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다.