References
- 국토해양부(2007) 수자원 관리 종합정보 시스템 홈페이지 http://www.wamis.go.kr
- 김성원, 김정헌, 박기범, 김형수(2010) "비선형 증발접시 증발량 산정을 위한 시간적 분해모형" 대한토목학회 논문집, 대한토목학회, 제 30권, 제4B호, pp. 399-412.
- 김성원, 김형수(2008) "증발접시 증발량과 알팔파 기준증발산량의 모형화를 위한 통합운영방법" 대한토목학회 논문집, 대한토목학회, 제 28권, 제 2B호, pp. 199-213.
- Bruton, J.M., McClendon, R.W., and Hoogenboom, G.(2000) Estimating daily pan evaporation with artificial neural networks. Transaction of the ASAE, ASAE, Vol. 43, No. 2, pp. 491-496. https://doi.org/10.13031/2013.2730
- Burian, S.J., Durrans, S.R., Nix, S.J., and Pitt, R.E.(2001) Training artificial neural networks to perform rainfall disaggregation. Journal of Hydrologic Engineering, ASCE, Vol. 6, No. 1, pp. 43-51. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(43)
- Burian, S.J., Durrans, S.R., Tomic, S., Pimmel, R.L., and Wai, C.N.(2000) Rainfall disaggregation using artificial neural networks. Journal of Hydrologic Engineering, ASCE, Vol. 5, No. 3, pp. 299-307. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(299)
- Choi, J., Socolofsky, S.A., and Olivera, F.(2008) Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations. Journal of Hydrologic Engineering, ASCE, Vol. 13, No. 6, pp. 476-487. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(476)
- Deswal, S., and Pal, M.(2008) Artificial neural network based modeling of evaporation losses in reservoirs. Proceedings of World Academy of Science, Engineering and Technology, Vol. 29, pp. 279-283.
- Dibike, Y.B., Velickov, S., Solomatine, D., and Abbott, M.B.(2001) Model induction with support vector machines: introductions and applications. Journal of Computing in Civil Engineering, ASCE, Vol. 15, pp. 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Eslamian, S.S., Gohari, S.A., Biabanaki, M., and Malekian, R.(2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. Journal of Applied Sciences, Vol. 8, No. 19, pp. 3497-3502. https://doi.org/10.3923/jas.2008.3497.3502
- Gundekar, H.G., Khodke, U.M., and Sarkar, S.(2008) Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrigation Science, Vol. 26, pp. 169-175. https://doi.org/10.1007/s00271-007-0083-y
- Gutierrez-Magness, A.L., and McCuen, R.H.(2004) Accuracy evaluation of rainfall disaggregation methods. Journal of Hydrologic Engineering, ASCE, Vol. 9, No. 2, pp. 71-78. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(71)
-
Haykin, S. (2009). Neural networks and learning machines,
$3^{rd}$ Edition, Pearson Education Inc., NJ, USA. - Jensen, M.E., Burman, R.D., and Allen, R.G.(1990) Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No. 70, ASCE, NY, pp. 332.
- Khadam, I.M., and Kaluarachchi, J.J.(2004) Use of soft information to describe the relative uncertainty of calibration data in hydrologic models. Water Resources Research, Vol. 40, No. 11, W11505. https://doi.org/10.1029/2003WR002939
- Keskin, M.E., and Terzi, O.(2006) Artificial neural networks models of daily pan evaporation. Journal of Hydrologic Engineering, ASCE, Vol. 11, No. 1, pp. 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
- Kim, S.(2004) Neural Networks Model and Embedded Stochastic Processes for Hydrological Analysis in South Korea. KSCE Journal of Civil Engineers, KSCE, Vol.8, No.1, pp. 141-148. https://doi.org/10.1007/BF02829090
- Kim, S., and Kim, H.S.(2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, Vol. 351, pp. 299-317. https://doi.org/10.1016/j.jhydrol.2007.12.014
- Kim, S., Kim, J.H., and Park, K.B.(2009) Statistical learning theory for the disaggregation of the climatic data. Proceedings of 33rd IAHR Congress 2009, IAHR/AIRH, Vancouver, British Columbia, Canada, PP. 1154-1162.
- Kisi, O.(2006) Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology, Vol. 329, pp. 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
- McCuen, R.H.(1993) Microcomputer applications in statistical hydrology, Prentice Hall, NJ, USA.
- Molina Martinez, J.M., Martinez Alvarez, V., Gonzalez-Real, M.M., and Baille, A.(2005) A simulation model for predicting hourly pan evaporation for meteorological data. Journal of Hydrology, Vol. 318, pp. 250-261.
- Principe, J.C., Euliano, N.R., and Lefebvre, W.C.(2000) Neural and adaptive systems: fundamentals through simulation, John Wiley & Sons, New York, USA.
- Rahimi Khoob, A.(2009) Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theoretical and Applied Climatology, Doi:10.1007/s00704-008-0096-3.
- Salas, J.D., Delleur, J.R., Yevjevich, V., and Lane, W.L.(1980) Applied modeling of hydrologic timese ries, Water Resources Publication, Littleton, CO, USA.
- Salas, J.D., Smith, R.A., Tabios III, G.Q., and Heo, J.H.(2001) Statistical computing techniques in water resources and environmental engineering, Unpublished book in CE622, Colorado State University, Fort Collins, CO, USA.
- Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M.(2002) Modeling evaporation using an artificial neural network algorithm. Hydrological Processes, Vol. 16, pp. 3189-3202. https://doi.org/10.1002/hyp.1096
- Tan, K.S., Chiew, F.H.S., and Grayson, R.B.(2007) A steepness index unit volume flood hydrograph approach for sub-daily flow disaggregation. Hydrological Processes, Vol. 21, pp. 2807-2816. https://doi.org/10.1002/hyp.6501
- Tripathi, S., Srinivas, V.V., and Nanjundish, R.S.(2006) Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, Vol. 330, pp. 621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
- Vapnik, V.N.(1992) Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems Vol. 4, pp. 831-838.
- Vapnik, V.N.(1995) The nature of statistical learning theory, Springer Verlag, New York, NY, USA.
- Wasserman, P.D.(1993) Advanced methods in neural computing, Van Nostrand Reinhold, New York, NY, USA.
- Zhang, J., Murch, R.R., Ross, M.A., Ganguly, A.R., and Nachabe, M.(2008) Evaluation of statistical rainfall disaggregation methods using rain-gauge information for west-central florida. Journal of Hydrologic Engineering, ASCE, Vol. 13, No. 12, pp. 1158-1169. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1158)