Hydrologic Disaggregation Model using Neural Networks Technique

신경망기법을 이용한 수문학적 분해모형

  • Kim, Sung-Won (Dept. of Rail. and Civil Engr., Dongyang University)
  • 김성원 (동양대학교 철도토목학과)
  • Received : 2010.07.21
  • Accepted : 2010.12.24
  • Published : 2010.12.31

Abstract

The purpose of this research is to apply the neural networks models for the hydrologic disaggregation of the yearly pan evaporation(PE) data in Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model(MLP-NNM) and support vector machine neural networks model(SVM-NNM), respectively. And, for the evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. The application of MLP-NNM and SVM-NNM for the hydrologic disaggregation of nonlinear time series data is evaluated from results of this research. Four kinds of the statistical index for the evaluation are suggested; CC, RMSE, E, and AARE, respectively. Homogeneity test using ANOVA and Mann-Whitney U test, furthermore, is carried out for the observed and calculated monthly PE data. We can construct the credible monthly PE data from the hydrologic disaggregation of the yearly PE data, and the available data for the evaluation of irrigation and drainage networks system can be suggested.

본 연구의 목적은 연 증발접시 증발량의 수문학적 분해를 위하여 신경망모형을 적용하는데 있다. 신경망 모형은 각각 다층 퍼셉트론 신경망모형(MLP-NNM)과 지지벡터기구 신경망모형(SVM-NNM)으로 구성되어 있다. 그리고 신경망모형의 수행평가를 위하여 훈련 및 테스트과정으로 구성되었다. 신경망모형의 훈련과정을 위하여 실측, 모의 및 혼합자료와 같은 세 가지 형태의 자료가 사용되었으며, 테스트과정을 위해서는 실측자료만 이용되었다. 평가를 위하여 4가지의 통계학적 지표(CC, RMSE, E, AARE)가 각각 제시되었으며, ANOVA 및 Mann-Whitney U 검증을 이용하여 실측 및 계산된 월 증발접시 증발량자료에 동질성검증을 실시하였다. 본 연구를 통하여 비선형 시계열자료의 수문학적 분해를 위해서 MLP-NNM과 SVM-NNM의 적용성을 평가하였다. 게다가 연 증발접시 증발량 자료의 수문학적 분해로부터 신뢰성있는 월 증발접시 증발량자료를 구축할 수 있을 것이며, 관개배수 네트워크 시스템의 평가를 위한 이용가능한 자료를 제공할 수 있을 것이다.

Keywords

References

  1. 국토해양부(2007) 수자원 관리 종합정보 시스템 홈페이지 http://www.wamis.go.kr
  2. 김성원, 김정헌, 박기범, 김형수(2010) "비선형 증발접시 증발량 산정을 위한 시간적 분해모형" 대한토목학회 논문집, 대한토목학회, 제 30권, 제4B호, pp. 399-412.
  3. 김성원, 김형수(2008) "증발접시 증발량과 알팔파 기준증발산량의 모형화를 위한 통합운영방법" 대한토목학회 논문집, 대한토목학회, 제 28권, 제 2B호, pp. 199-213.
  4. Bruton, J.M., McClendon, R.W., and Hoogenboom, G.(2000) Estimating daily pan evaporation with artificial neural networks. Transaction of the ASAE, ASAE, Vol. 43, No. 2, pp. 491-496. https://doi.org/10.13031/2013.2730
  5. Burian, S.J., Durrans, S.R., Nix, S.J., and Pitt, R.E.(2001) Training artificial neural networks to perform rainfall disaggregation. Journal of Hydrologic Engineering, ASCE, Vol. 6, No. 1, pp. 43-51. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(43)
  6. Burian, S.J., Durrans, S.R., Tomic, S., Pimmel, R.L., and Wai, C.N.(2000) Rainfall disaggregation using artificial neural networks. Journal of Hydrologic Engineering, ASCE, Vol. 5, No. 3, pp. 299-307. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(299)
  7. Choi, J., Socolofsky, S.A., and Olivera, F.(2008) Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations. Journal of Hydrologic Engineering, ASCE, Vol. 13, No. 6, pp. 476-487. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(476)
  8. Deswal, S., and Pal, M.(2008) Artificial neural network based modeling of evaporation losses in reservoirs. Proceedings of World Academy of Science, Engineering and Technology, Vol. 29, pp. 279-283.
  9. Dibike, Y.B., Velickov, S., Solomatine, D., and Abbott, M.B.(2001) Model induction with support vector machines: introductions and applications. Journal of Computing in Civil Engineering, ASCE, Vol. 15, pp. 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
  10. Eslamian, S.S., Gohari, S.A., Biabanaki, M., and Malekian, R.(2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. Journal of Applied Sciences, Vol. 8, No. 19, pp. 3497-3502. https://doi.org/10.3923/jas.2008.3497.3502
  11. Gundekar, H.G., Khodke, U.M., and Sarkar, S.(2008) Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrigation Science, Vol. 26, pp. 169-175. https://doi.org/10.1007/s00271-007-0083-y
  12. Gutierrez-Magness, A.L., and McCuen, R.H.(2004) Accuracy evaluation of rainfall disaggregation methods. Journal of Hydrologic Engineering, ASCE, Vol. 9, No. 2, pp. 71-78. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:2(71)
  13. Haykin, S. (2009). Neural networks and learning machines, $3^{rd}$ Edition, Pearson Education Inc., NJ, USA.
  14. Jensen, M.E., Burman, R.D., and Allen, R.G.(1990) Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No. 70, ASCE, NY, pp. 332.
  15. Khadam, I.M., and Kaluarachchi, J.J.(2004) Use of soft information to describe the relative uncertainty of calibration data in hydrologic models. Water Resources Research, Vol. 40, No. 11, W11505. https://doi.org/10.1029/2003WR002939
  16. Keskin, M.E., and Terzi, O.(2006) Artificial neural networks models of daily pan evaporation. Journal of Hydrologic Engineering, ASCE, Vol. 11, No. 1, pp. 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)
  17. Kim, S.(2004) Neural Networks Model and Embedded Stochastic Processes for Hydrological Analysis in South Korea. KSCE Journal of Civil Engineers, KSCE, Vol.8, No.1, pp. 141-148. https://doi.org/10.1007/BF02829090
  18. Kim, S., and Kim, H.S.(2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, Vol. 351, pp. 299-317. https://doi.org/10.1016/j.jhydrol.2007.12.014
  19. Kim, S., Kim, J.H., and Park, K.B.(2009) Statistical learning theory for the disaggregation of the climatic data. Proceedings of 33rd IAHR Congress 2009, IAHR/AIRH, Vancouver, British Columbia, Canada, PP. 1154-1162.
  20. Kisi, O.(2006) Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology, Vol. 329, pp. 636-646. https://doi.org/10.1016/j.jhydrol.2006.03.015
  21. McCuen, R.H.(1993) Microcomputer applications in statistical hydrology, Prentice Hall, NJ, USA.
  22. Molina Martinez, J.M., Martinez Alvarez, V., Gonzalez-Real, M.M., and Baille, A.(2005) A simulation model for predicting hourly pan evaporation for meteorological data. Journal of Hydrology, Vol. 318, pp. 250-261.
  23. Principe, J.C., Euliano, N.R., and Lefebvre, W.C.(2000) Neural and adaptive systems: fundamentals through simulation, John Wiley & Sons, New York, USA.
  24. Rahimi Khoob, A.(2009) Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theoretical and Applied Climatology, Doi:10.1007/s00704-008-0096-3.
  25. Salas, J.D., Delleur, J.R., Yevjevich, V., and Lane, W.L.(1980) Applied modeling of hydrologic timese ries, Water Resources Publication, Littleton, CO, USA.
  26. Salas, J.D., Smith, R.A., Tabios III, G.Q., and Heo, J.H.(2001) Statistical computing techniques in water resources and environmental engineering, Unpublished book in CE622, Colorado State University, Fort Collins, CO, USA.
  27. Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M.(2002) Modeling evaporation using an artificial neural network algorithm. Hydrological Processes, Vol. 16, pp. 3189-3202. https://doi.org/10.1002/hyp.1096
  28. Tan, K.S., Chiew, F.H.S., and Grayson, R.B.(2007) A steepness index unit volume flood hydrograph approach for sub-daily flow disaggregation. Hydrological Processes, Vol. 21, pp. 2807-2816. https://doi.org/10.1002/hyp.6501
  29. Tripathi, S., Srinivas, V.V., and Nanjundish, R.S.(2006) Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, Vol. 330, pp. 621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
  30. Vapnik, V.N.(1992) Principles of risk minimization for learning theory. Advances in Neural Information Processing Systems Vol. 4, pp. 831-838.
  31. Vapnik, V.N.(1995) The nature of statistical learning theory, Springer Verlag, New York, NY, USA.
  32. Wasserman, P.D.(1993) Advanced methods in neural computing, Van Nostrand Reinhold, New York, NY, USA.
  33. Zhang, J., Murch, R.R., Ross, M.A., Ganguly, A.R., and Nachabe, M.(2008) Evaluation of statistical rainfall disaggregation methods using rain-gauge information for west-central florida. Journal of Hydrologic Engineering, ASCE, Vol. 13, No. 12, pp. 1158-1169. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1158)