• Title/Summary/Keyword: 최적 블랭크 형상

Search Result 20, Processing Time 0.023 seconds

Initial Blank Optimization Design of Square Can Multistage Drawing considering Formability and Product Shape (사각형 캔 드로잉 다단 공정에서 성형성과 제품형상을 동시에 고려한 초기 블랭크 형상 최적 설계)

  • Park, Sang-Min;Kim, Dong Kyu;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • Multistage deep-drawing technology is used widely in the production of mobile phone battery cases to improve productivity and economy. To ensure adequate capacity and rigidity, such cases are fabricated as a rectangular cup with a high slender ratio. The multistage deep-drawing of a rectangular cup entails a high slender ratio, and the heights of the product sides may be non-uniform because of the complicated deformation mechanisms. This causes problems in product assembly that affects the surface quality of the case. This study examined a blank shape that minimizes the height variations of the product to resolve the aforementioned problems. Optimization design and analysis were performed to identify the shape that yields the least variation. The long and short sides of an oval blank were set as the design variables. The objective function was set to yield the lowest height difference, and the thickness reduction rate of the product was set to the target range. In addition, the height of the final shape was set as a constraint. The height difference was minimized successfully using the optimized design. The design process of the initial blank for all rectangular shapes can be automated in the future.

The CAE technology of automobile die for optimal design (자동차 금형의 최적설계를 위한 CAE 기술)

  • 김영석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.24-34
    • /
    • 1995
  • 여기서는 최근의 자동차 금형의 최적설계 기술개발을 위한 국내의 연구동향을 중심으로 살펴보고 실제 CAE 기술의 적용 예를 소개하고자 한다. 1. 금형설계에서의 CAE 기술의 도입. 2. CAE 기술로서의 FEA 해석. 3. CAE 도입의 기술적 제 문제. 4. 프레스 공정의 2차원/3차원 해석. 5. 최적 블랭크 형상설계기술. 6. 강건설계를 위한 CAE 기술의 응용.

  • PDF

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Optimum design of blank shape for press forming (최적 프레스가공을 위한 블랭크형상 설계)

  • Kim, Yeong-Seok;Park, Gi-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1141-1148
    • /
    • 1997
  • In the stamping industry the blank shape to be stamped into a designed shape has been conventionally determined from the try out process by the press engineers. The work needs a lot of time and thus leads a loss of productivity. In this study boundary element method for 2-dimensional potential problem was used to design optimum blank shapes for irregular press forming. Here we assumed that the blank is controlled by blank holder only and material flow at blank holder was under potential flow. The developed PC code for designing the optimum blank shape shows that the blank shapes for optimal drawing can be calculated within a few minute in pentium PC and the calculated shapes agree well with the experiments. However the application of this method is constrained only to the pressed product with flat bottom.

Experimental Determination of the Optimum Blank Shape in Rectangular Cup Drawing (사각 컵 드로잉 공정에서의 최적 블랭크 형상 결정)

  • 배원병;허병우;김호윤;이영석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.68-71
    • /
    • 1998
  • Rectangular deep drawing process is widely used in sheet metal forming. But there are various defects such as earring, wrinkling, tearing, etc. In order to avoid the defects, an optimum blank shape is required. But it has not been generalized to determine the optimum blank shape because deep drawing processes are involved in complex process parameters. So, it is very necessary to do research systematically about determining the optimum blank shape of deep drawing process. In this study a rectangular cup drawing test has been carried out to determine the optimum blank shape for various stainless steel sheets. From the test, a new blank model, which has no earring, is proposed.

  • PDF

A Study on the Optimal Blank Design Using Sensitivity Analysis Method (민감도법에 의한 최적블랭크 형상 설계에 관한 연구)

  • Sim, Hyeon-Bo;Son, Gi-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.79-86
    • /
    • 2000
  • In this study, a method of optimal blank design using the sensitivity analysis has been proposed. To get sensitivity a well-known commercial code PAM-STAMP has been used. In order to verify this method, formings of square cup, clover shaped cup and L shaped cup have been chosen as the examples. With the predicted optimal blank both computer simulation and experiment are performed. Excellent agreements are recognized between the numerical results and the target contour shapes. Through the investigation, the proposed systematic method of optimal blank design is found to be effective in the design of the deep drawing process.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height (가스압력을 이용한 자유벌징에서 성형양 최대화를 위한 두께 분포 최적화)

  • Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.899-904
    • /
    • 2014
  • Thickness profiled blank is designed using optimization techniques for maximizing the bulged heights during the free bulging of Inconel 718. The thickness of the blank was described by the Bezier curve and the locations of the control points were used as the design variables for optimization. The maximization of the bulged heights within the limited strain range served as the objective function and constraints for optimization. The equivalent static loads method for non-linear static response structural optimization (ESLSO) was used and the result of the optimization revealed 22 increased bulged heights. A free bulging test using a blank with an optimized profile was conducted to verify the optimization process. The results were compared with those of numerical analysis in terms of bulged height and deformed shape.

Method of Shape Error Measurement for the Optimal Blank Design of Shapes with 3D Contour Lines (목표윤곽선이 3 차원 곡선인 형상의 최적블랭크 설계를 위한 형상오차 측정법)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • After a short review of the iterative optimal blank method, a new method of measuring the shape error for stamped parts with 3D contour lines, which is an essential component of the optimal blank design, is proposed. When the contour line of the target shape does not exist in a plane, but exists in 3D space, especially when the shape of the target contour line is very complicated as in the real automotive parts, then the measurement of the shape error is critical. In the current study, a method of shape error measurement based on the minimum distance is suggested as an evolution of the radius vector method. With the proposed method, the optimal blank shapes of real automotive parts were found and compared to the results of the radius vector method. From the current investigation the new method is found to resolve the issues with the radius vector method.