• Title/Summary/Keyword: 차분 프라이버시

Search Result 24, Processing Time 0.021 seconds

A Study on a Differentially Private Model for Financial Data (금융 데이터 상에서의 차분 프라이버시 모델 정립 연구)

  • Kim, Hyun-il;Park, Cheolhee;Hong, Dowon;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1519-1534
    • /
    • 2017
  • Data de-identification is the one of the technique that preserves individual data privacy and provides useful information of data to the analyst. However, original de-identification techniques like k-anonymity have vulnerabilities to background knowledge attacks. On the contrary, differential privacy has a lot of researches and studies within several years because it has both strong privacy preserving and useful utility. In this paper, we analyze various models based on differential privacy and formalize a differentially private model on financial data. As a result, we can formalize a differentially private model on financial data and show that it has both security guarantees and good usefulness.

Privacy-Preserving Method to Collect Health Data from Smartband

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.113-121
    • /
    • 2020
  • With the rapid development of information and communication technology (ICT), various sensors are being embedded in wearable devices. Consequently, these devices can continuously collect data including health data from individuals. The collected health data can be used not only for healthcare services but also for analyzing an individual's lifestyle by combining with other external data. This helps in making an individual's life more convenient and healthier. However, collecting health data may lead to privacy issues since the data is personal, and can reveal sensitive insights about the individual. Thus, in this paper, we present a method to collect an individual's health data from a smart band in a privacy-preserving manner. We leverage the local differential privacy to achieve our goal. Additionally, we propose a way to find feature points from health data. This allows for an effective trade-off between the degree of privacy and accuracy. We carry out experiments to demonstrate the effectiveness of our proposed approach and the results show that, with the proposed method, the error rate can be reduced upto 77%.

Privacy-Preserving Traffic Volume Estimation by Leveraging Local Differential Privacy

  • Oh, Yang-Taek;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.19-27
    • /
    • 2021
  • In this paper, we present a method for effectively predicting traffic volume based on vehicle location data that are collected by using LDP (Local Differential Privacy). The proposed solution in this paper consists of two phases: the process of collecting vehicle location data in a privacy-presering manner and the process of predicting traffic volume using the collected location data. In the first phase, the vehicle's location data is collected by using LDP to prevent privacy issues that may arise during the data collection process. LDP adds random noise to the original data when collecting data to prevent the data owner's sensitive information from being exposed to the outside. This allows the collection of vehicle location data, while preserving the driver's privacy. In the second phase, the traffic volume is predicted by applying deep learning techniques to the data collected in the first stage. Experimental results with real data sets demonstrate that the method proposed in this paper can effectively predict the traffic volume using the location data that are collected in a privacy-preserving manner.

Privacy-Preserving Aggregation of IoT Data with Distributed Differential Privacy

  • Lim, Jong-Hyun;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.65-72
    • /
    • 2020
  • Today, the Internet of Things is used in many places, including homes, industrial sites, and hospitals, to give us convenience. Many services generate new value through real-time data collection, storage and analysis as devices are connected to the network. Many of these fields are creating services and applications that utilize sensors and communication functions within IoT devices. However, since everything can be hacked, it causes a huge privacy threat to users who provide data. For example, a variety of sensitive information, such as personal information, lifestyle patters and the existence of diseases, will be leaked if data generated by smarwatches are abused. Development of IoT must be accompanied by the development of security. Recently, Differential Privacy(DP) was adopted to privacy-preserving data processing. So we propose the method that can aggregate health data safely on smartwatch platform, based on DP.

An Enhanced Data Utility Framework for Privacy-Preserving Location Data Collection

  • Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.69-76
    • /
    • 2024
  • Recent advances in sensor and mobile technologies have made it possible to collect user location data. This location information is used as a valuable asset in various industries, resulting in increased demand for location data collection and sharing. However, because location data contains sensitive user information, indiscriminate collection can lead to privacy issues. Recently, geo-indistinguishability (Geo-I), a method of differential privacy, has been widely used to protect the privacy of location data. While Geo-I is powerful in effectively protecting users' locations, it poses a problem because the utility of the collected location data decreases due to data perturbation. Therefore, this paper proposes a method using Geo-I technology to effectively collect user location data while maintaining its data utility. The proposed method utilizes the prior distribution of users to improve the overall data utility, while protecting accurate location information. Experimental results using real data show that the proposed method significantly improves the usefulness of the collected data compared to existing methods.

Privacy Model Recommendation System Based on Data Feature Analysis

  • Seung Hwan Ryu;Yongki Hong;Gihyuk Ko;Heedong Yang;Jong Wan Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.81-92
    • /
    • 2023
  • A privacy model is a technique that quantitatively restricts the possibility and degree of privacy breaches through privacy attacks. Representative models include k-anonymity, l-diversity, t-closeness, and differential privacy. While many privacy models have been studied, research on selecting the most suitable model for a given dataset has been relatively limited. In this study, we develop a system for recommending the suitable privacy model to prevent privacy breaches. To achieve this, we analyze the data features that need to be considered when selecting a model, such as data type, distribution, frequency, and range. Based on privacy model background knowledge that includes information about the relationships between data features and models, we recommend the most appropriate model. Finally, we validate the feasibility and usefulness by implementing a recommendation prototype system.

Analysis of privacy issues and countermeasures in neural network learning (신경망 학습에서 프라이버시 이슈 및 대응방법 분석)

  • Hong, Eun-Ju;Lee, Su-Jin;Hong, Do-won;Seo, Chang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.285-292
    • /
    • 2019
  • With the popularization of PC, SNS and IoT, a lot of data is generated and the amount is increasing exponentially. Artificial neural network learning is a topic that attracts attention in many fields in recent years by using huge amounts of data. Artificial neural network learning has shown tremendous potential in speech recognition and image recognition, and is widely applied to a variety of complex areas such as medical diagnosis, artificial intelligence games, and face recognition. The results of artificial neural networks are accurate enough to surpass real human beings. Despite these many advantages, privacy problems still exist in artificial neural network learning. Learning data for artificial neural network learning includes various information including personal sensitive information, so that privacy can be exposed due to malicious attackers. There is a privacy risk that occurs when an attacker interferes with learning and degrades learning or attacks a model that has completed learning. In this paper, we analyze the attack method of the recently proposed neural network model and its privacy protection method.

Utility Analysis of Federated Learning Techniques through Comparison of Financial Data Performance (금융데이터의 성능 비교를 통한 연합학습 기법의 효용성 분석)

  • Jang, Jinhyeok;An, Yoonsoo;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.405-416
    • /
    • 2022
  • Current AI technology is improving the quality of life by using machine learning based on data. When using machine learning, transmitting distributed data and collecting it in one place goes through a de-identification process because there is a risk of privacy infringement. De-identification data causes information damage and omission, which degrades the performance of the machine learning process and complicates the preprocessing process. Accordingly, Google announced joint learning in 2016, a method of de-identifying data and learning without the process of collecting data into one server. This paper analyzed the effectiveness by comparing the difference between the learning performance of data that went through the de-identification process of K anonymity and differential privacy reproduction data using actual financial data. As a result of the experiment, the accuracy of original data learning was 79% for k=2, 76% for k=5, 52% for k=7, 50% for 𝜖=1, and 82% for 𝜖=0.1, and 86% for Federated learning.

Privacy-Preserving Collection and Analysis of Medical Microdata

  • Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.93-100
    • /
    • 2024
  • With the advent of the Fourth Industrial Revolution, cutting-edge technologies such as artificial intelligence, big data, the Internet of Things, and cloud computing are driving innovation across industries. These technologies are generating massive amounts of data that many companies are leveraging. However, there is a notable reluctance among users to share sensitive information due to the privacy risks associated with collecting personal data. This is particularly evident in the healthcare sector, where the collection of sensitive information such as patients' medical conditions poses significant challenges, with privacy concerns hindering data collection and analysis. This research presents a novel technique for collecting and analyzing medical data that not only preserves privacy, but also effectively extracts statistical information. This method goes beyond basic data collection by incorporating a strategy to efficiently mine statistical data while maintaining privacy. Performance evaluations using real-world data have shown that the propose technique outperforms existing methods in extracting meaningful statistical insights.

Collecting Health Data from Wearable Devices by Leveraging Salient Features in a Privacy-Preserving Manner

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • With the development of wearable devices, individuals' health status can be checked in real time and risks can be predicted. For example, an application has been developed to detect an emergency situation of a patient with heart disease and contact a guardian through analysis of health data such as heart rate and electrocardiogram. However, health data is seriously damaging when it is leaked as it relates to life. Therefore, a method to protect personal information is essential in collecting health data, and this study proposes a method of collecting data while protecting the personal information of the data owner through a LDP(Local Differential Privacy). The previous study introduced a technique of transmitting feature point data rather than all data to a data collector as an algorithm for searching for fixed k feature points. Next, this study will explain how to improve the performance by up to 75% using an algorithm that finds the optimal number of feature points k.