• 제목/요약/키워드: 지식탐사

Search Result 95, Processing Time 0.027 seconds

밀도 기반 클러스터링을 이용한 효과적인 공간 특성화 방법의 설계 및 구현 (Design and Implementation of Effective Spatial Characterization using Density-Based Clustering)

  • 유재현;이주홍;전석주;박상호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.148-150
    • /
    • 2005
  • 최근 유비쿼터스 컴퓨팅의 관심이 증대되면서, 방대하고 다양한 형태의 데이터에 대한 효율성과 효과성을 고려한 지식 탐사방법연구의 필요성이 제기되었다. 기존의 지식 탐사방법에 대한 연구들은 방대한 비공간 데이터들의 지식을 효율적으로 탐사하고자 하였다. 그러나 기존의 연구는 탐사된 지식의 효율성안을 고려하여 유용한 지식탐사를 보장하지 못하는 문제점을 가진다. 따라서 본 논문은 공간 데이터 타입을 포함하는 대용랑의 데이터들로부터 효과성을 보장하는 특성화 지식 탐사방법을 제안한다. 본 논문에서 제안하는 특성화 지식 탐사기법은 공간 및 비공간 데이터들의 특성을 나타내는 요약된 지식을 제공하며, 밀도 기반의 클러스터링 기법을 적용하여 특성화 지식 탐사의 효과성을 높인다.

  • PDF

시공간 지식탐사를 위한 3계층 프레임워크 (A 3-Layered Framework for Spatiotemporal Knowledge Discovery)

  • 이준욱;남광우;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권3호
    • /
    • pp.205-218
    • /
    • 2004
  • 시공간 데이타관리를 위한 데이타베이스 기술이 발전함에 따라 방대한 시공간 데이타 집합으로부터 의미 있는 시공간 지식 탐사를 필요로 하는 시공간 응용 서비스가 증대되고 있다. 이 논문에서는 시공간 지식 탐사 기법 개발을 지원하기 위하여 시공간 3계층 지식탐사 프레임워크를 제안하였다. 프레임 워크에서는 시공간 지식 탐사 문제 정의를 위한 기반 모델을 제시하여 시공간 지식에 대한 정의 및 관계를 표현할 수 있도록 하였다. 또한 시공간 지식 탐사 시스템의 구성요소 및 구현 모델을 제시하였다. 이 논문에서 제안한 시공간 지식 탐사를 위한 프레임워크는 앞으로 새로운 유형의 시공간 지식 탐사 기법 개발에 적용될 수 있는 특징을 포함하고 있다. 제안한 프레임워크는 시공간 이동 패턴과 같은 새로운 유형의 지식 탐사 기법 개발 지원에 있어 시공간 데이타 집합, 정보 및 지식에 대한 관계 규정과 각 요소에 대한 표현 모델을 제공함으로써 지식 탐사 문제를 형식화하고 단순화할 수 있다.

밀도 기반 클러스트링을 적용한 공간 특성화 시스템 (Spatial Characterization System using Density-Based Clustering)

  • 유재현;이주홍;전석주;박상호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.101-104
    • /
    • 2005
  • 최근 GIS 시스템, 위성사진, 원격 탐사 시스템과 같은 다양한 응용 시스템으로부터 수집된 방대한 양의 공간 데이터에서 지식을 발견하는 공간 데이터 마이닝에 대한 관심이 더욱 높아지고 있다. 기존의 공간 데이터마이닝에 대한 연구들은 방대한 비공간 데이터들의 지식을 효율적으로 탐사하고자 하였다. 그러나 기존의 시스템은 발견된 지식의 효과성을 보장하지 못하는 문제점을 가진다. 따라서 본 논문은 공간 데이터 타입을 포함하는 대용량의 데이터들로부터 효과성을 보장하는 특성화 지식 탐사시스템을 제안한다. 본 논문에서 제안하는 공간 특성화 지식 탐사시스템은 밀도 기반의 클러스터링 기법을 적용하여 탐사된 특성화 지식의 효과성을 높였다.

  • PDF

데이터 웨어하우스 환경에서의 설명기반 데이터 마이닝 (Explanation-based Data Mining in Data Warehouse)

  • 김현수;이창호
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.115-123
    • /
    • 1999
  • 산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이터들이 축적되고 있다. 이러한 데이터로부터 유용한 지식을 추출하기 위해 여러 가지 데이터 마이닝 기법들이 연구되어왔다. 특히 데이터 웨어하우스의 등장은 이러한 데이터 마이닝에 있어 필요한 데이터 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이터 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성 없는(trivial, spurious and irrelevant)내용만 무수히 쏟아낼 수 있다. 그러므로 데이터 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라도 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이터 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문에서는 데이터 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이터 웨어하우스로부터 연관규칙을 검증하는 일련의 아텍쳐(architecture)를 제시하고다 한다. 먼저 데이터 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이터 웨어하우스와 데이터 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이터 웨어하우스으 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기위한 지식표현 방법으로 Relational Predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사를 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이터 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 도메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이터 마이닝 접근을 제시하였다는데 있다.

  • PDF

데이터웨어하우스 환경에서의 설명기반 데이터마이닝 (Explanation-Based Data Mining in Data Warehouse)

  • 김현수;이창호
    • 지능정보연구
    • /
    • 제5권2호
    • /
    • pp.15-27
    • /
    • 1999
  • 산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이터들이 축적되고 있다. 이러한 데이터로부터 유용한 지식을 추출하기 위해 여러 가지 데이터마이닝 기법들이 연구되어 왔다. 특히 데이터웨어하우스의 등장은 이러한 데이터마이닝에 있어 필요한 데이터 제공 환경을 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이터마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또한 관련성 없는(Trivial, Spurious and Irrelevant) 내용만 무수히 쏟아낼 수 있다. 그러므로 데이터마이닝의 결과가 비록 통계적 유의성을 가진다 하더라고 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이터마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문의 목적인 이러한 데이터마이닝에서 추출된 결과를 검증하고 아울러 새로운 지식 탐색 방향을 제시하는 방법론을 정립하는데 있다. 본 논문에서는 데이터마이닝 기법 중 연관규칙탐사(Associations)로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하였고, 이를 위해 도메인 지식(Domain Knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기 위한 지식표현방법으로 관계형 술어논리(RPL : Relational Predicate Logic)를 개발하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대한 RPL로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(Explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사를 통해 검증한 후 새로운 지식을 얻는 설명기반 데이터마이닝 구조(Explanation-based Data Mining Architecture)를 제시하였다.

  • PDF

데이타 웨어하우스 환경에서의 설명기반 데이타 마이닝 (Explanation-based Data Mining in Data Warehouse)

  • 김현수;이창호
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.115-123
    • /
    • 1999
  • 산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이타들이 축적되고 있다. 이러한 데이타로부터 유용한 지식을 추출하기 위해 여러 가지 데이타 마이닝 기법들이 연구되어왔다. 특히 데이타 웨어하우스의 등장은 이러한 데이타 마이닝에 있어 필요한 데이타 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이타 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성이 없는(trivial, spurious and irrelevant) 내용만 무수히 쏟아낼 수 있다. 그러므로 데이타 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라고 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이타 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문의 목적은 이러한 데이타 마이닝에서 추출된 결과를 검증하고 아울러 새로운 지식 탐색 방향을 제시하는 방법론을 정립하는데 있다. 본 논문에서는 데이타 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이타 웨어하우스로부터 연관규칙을 검증하는 일련의 아키텍쳐(architecture)를 제시하고자 한다. 먼저 데이타 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이타 웨어하우스와 데이타 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이타 웨어하우스의 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기 위한 지식표현 방법으로 Relational predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사론 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이타 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 고메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이타 마이닝 접근을 제시하였다는데 있다.

  • PDF

캘린더 패턴 기반의 시간 연관적 분류 기법 (Temporal Associative Classification based on Calendar Patterns)

  • 이헌규;노기용;서성보;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권6호
    • /
    • pp.567-584
    • /
    • 2005
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이타로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 대표적 데이타마이닝 기법인 연관규칙과 분류기법은 실세계의 여러 응용분야에서 사용된다. 그러나 대부분의 데이타가 시간 속성을 포함함에도 불구하고 기존의 기법들은 시간 속성을 고려하지 않고 주로 정적인 데이타에 대한 지식 탐사만이 진행되었다. 그리고 시간 데이타에 대한 데이타마이닝 연구들은 데이타의 발생시점과 시간 제약조건을 추가한 지식 탐사에 중점을 두고 있어 데이타가 포함한 시간 의미나 시간 관계를 탐사하는데 부족하였다. 이 논문에서는 시간 클래스 연관규칙에 기반한 시간 연관적 분류기법을 제안한다. 이 기법은 분류규칙 생성을 위해서 연관적 분류에 시간 차원을 포함하여 확장한 시간 클래스 연관규칙에 의해 탐사된 규칙들을 적용하는 것이다. 그러므로 이 기법은 기존의 분류 기법들에 비해 더 유용한 지식탐사가 가능하다.

국제물류 통합 플랫폼 서비스를 위한 데이터웨어하우스 스키마 설계 (Design of Data Warehouse Schema for International Logistics Platform Services)

  • 이선영;이종연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.318-321
    • /
    • 2008
  • 국제물류 EPCglobal Network 프레임워크에서 대용량 운송 데이터베이스의 누적과 경영 전략의 의사결정에 필요한 지식 탐사를 위해 데이터 웨어하우스 시스템 도입이 요구된다. 따라서 본 연구에서는 국제물류 통합 플랫폼을 지원하는 데이터 웨어하우스를 설계하기 위해 현재 데이터베이스 시스템을 분석하고 다차원 데이터 모델인 사실 별자리 스키마 구조를 이용한다. 또한 설계된 데이터웨어하우스를 통해 의사결정을 지원할 수 있는 지식탐사를 위한 질의들의 예를 보여준다.

데이타마이닝 기법을 이용한 문서 자동 분류 모델 (An Automatic Text Classification Model using Association Rules)

  • 김영인;이진용;문현정;우용태
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2000년도 추계학술대회 E-Business와 정보보안
    • /
    • pp.101-108
    • /
    • 2000
  • 기업에서 보유한 전문 지식 정보가 급속도로 증가함에 따라 대량의 문서에 저장된 지식 정보를 효과적으로 탐색하여 기업 경영에 활용하기 위한 지식경영시스템 도입이 확산되고 있다. 이러한 지식경영시스템에서 핵심적인 구성 요소는 전문 분야의 지식 정보를 체계적으로 분류하고 효율적으로 검색하기 위한 지식 탐사 기법이다. 본 논문에서는 데이타마이닝 기법을 이용하여 문서를 자동적으로 분류하기 위한 새로운 모델을 제안하였다. 연관 규칙 탐사 알고리즘을 이용하여 학습용 문서 집합으로부터 세부 분야를 대표하는 색인어 집합을 구성하였다. 세부 분야별 색인어 집합에 대하여 전체 문서에 대한 비중에 따라 가중치 배열을 구성하여 문서를 자동으로 분류하기 위한 기준으로 삼았다. 임의의 문서를 자동적으로 분류하는 실험을 통하여 제안된 방법의 효율성을 검정하였다.

  • PDF

이동객체 위치 일반화를 이용한 시공간 이동 패턴 탐사 (Spatiotemporal Moving Pattern Discovery using Location Generalization of Moving Objects)

  • 이준욱;남광우
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1103-1114
    • /
    • 2003
  • 현재의 이동객체를 기반으로 하는 다양한 시공간 응용환경에서의 서비스 지원 시스템 개발을 위하여 중요한 문제 중의 하나는 방대한 이동객체의 위치 이동 데이터로부터의 의미 있는 지식인 시공간 이동 패턴을 탐사하는 것이다. 이를 위하여 시간적 위상관계, 공간적 위상관계 그리고 시공간적 위상관계에 대한 접근이 지식 탐사를 위하여 고려되어야 한다. 이 논문에서는 효율적인 시공간 이동 패턴 탐사 기법인 MPMine 알고리즘을 제안하였다. 제안한 기법은 시간 제약조건과 공간 제약조건 등을 함께 괴려하며 또한 공간 위상 연산인 contain()을 이용한 공간 개념화를 수행할 수 있다. 제안한 기법은 기존의 일반적인 시간 패턴 탐사 기법과 달리 이동객체 데이터 집합으로부터 위치 및 일반화를 통하여 탐색 공간을 줄일 수 있어 효율적으로 유용한 이동 패턴을 탐사할 수 있다.