• Title/Summary/Keyword: 준최적 $H_{\infty}$제어

Search Result 6, Processing Time 0.022 seconds

(J,J')-lossless factorization and $H^{\infty}$ control in discrete-time systems (이산시간 시스템에서 (J,J')-lossless 분해와 $H^{\infty}$ 제어)

  • 정은태;이재명;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.65-72
    • /
    • 1994
  • We resolve the suboptimal $\infty$ control problem using (J,J')-lossless coprime factorization by transforming the linear fractional transformation (LFT) into chain scattering description (CSD) in discrete-time systems. The condition transformed LFT into CSD is that the inverse matrix of $P_{21}$ of standard plant exists. But, this paper presents the method of transforming LFT into CSD for 4-block problem in case that the inverse matrix of $P_{21}$ of standard plant does not exist and parameterization of the all suboptimal $\infty$T controllers using (J,J')-lossless coprime factorization. It is shown that this method can resolve the suboptimal $\infty$ control problem solving only two Riccati equations in discrete-time systems.

  • PDF

Design of Robust Speed Controllers for Marine Diesel Engine (선박용 대형 디젤 기관의 강인 속도 제어기 설계)

  • Hwang, Soon-Kyu;Lee, Young-Chan;Kim, Chang-Hwa;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.820-828
    • /
    • 2011
  • Energy saving is one of the most important factors for profits in marine transportation. In order to reduce the specific fuel oil consumption, the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of propulsion engine and propeller that has better efficiency as lower rotational speed. As the engine has lower speed the variation of rotational torque become larger because of the longer delay time in fuel oil injection process. In this study, robust control theory is applied to the design of engine speed controllers which are sub-optimal $H_{\infty}$ controller, $H_{\infty}$ loop-shaping controller and ${\mu}$-synthesis controller considering robust stability and robust performance. And the validity of these three controllers is investigated through the results of computer simulation.

$H^{\infty}$-Optimal Design Using Hankel-Approximation (Hankel-근사화를 이용한 $H^{\infty}$--최적설계)

  • 이경준;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.34-39
    • /
    • 1991
  • In this paper, we provide a treatment of the $H^{\infty}$-mixed sensitivity optimization approach to feedback system design. With compromising between the effect of a disturbance at the plant output and the effect of plant perturbations, we propose an algorithm to design robust controller. A $H^{\infty}$-optimization problem is to be equivalent to a Hankel-approximation, this enables the problem to be solved using state-space methods based on balanced realizations.s.

  • PDF

$\textrm{HO}_2$/$\textrm{H}_\infty$ optimal controller design using parameterization of $\textrm{HO}_2$ suboptimal controller ($\textrm{HO}_2$ 준최적제어기의 변수화를 이용한 혼합된 $\textrm{HO}_2$/$\textrm{H}_\infty$ 최적제어게 설계)

  • 류동기;방경호;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.754-759
    • /
    • 1992
  • In this paper, we proposed a mixed H$_{2}$/H$_{\infty}$ optimal controller design method using the parameterization of H$_{2}$ suboptimal controller. The method is based on the minimization of H$_{2}$ performance measure with an H$_{\infty}$-norm constraint. We also derived the necessary and sufficient conditions for existence of solution from the decoupled Riccati equations. And the designed controller has state-space representation.n.

  • PDF

Mixed $L_1/H_{\infty}$ Suboptimal Control: A LMI Approach (LMI를 이용한 $L_1/H_{\infty}$ 준최적 제어기법)

  • Chun, K.H.;Noh, D.J.;Seo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1131-1133
    • /
    • 1996
  • In this paper, we consider the mixed $L_1/H_{\infty}$ problems of finding internally stabilizing controllers which minimize the peak-to-peak gain of a certain closed loop transfer function with $H_{\infty}$-norm constraint on other closed loop transfer function(or vise versa). This problem is a useful framework for designing a controller with the norm constraints upon time and frequency domain. We formulate the mixed $L_1/H_{\infty}$ problem as LMI problems by using the reachable set. This paper offers the sufficient condition for the existence of suboptimal state feedback controller, and shows that suboptimal solution can be obtained by solving a finite-dimensional convex optimization and a line search.

  • PDF

A Novel Approach on $H_{\infty}$-LTR Controller Design ($H_{\infty}$-LTR 제어기 설계의 새로운 접근방법)

  • Lhee, Chin-Gook;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.38-45
    • /
    • 1999
  • In this paper, A novel approach on $H_{\infty}-LTR$ design scheme is presented. The proposed scheme provides a design toll which can trade-off the recovery error against the control input. In the first stage, Kalman filter is designed to shape the loop to satisfy the required performance specifications. The designed Kalman filter, together with the plant transfer function, is used as a target transfer function. In the second stage, sensitivity function weighted $H_{\infty}-LTR$suboptimal LTR is designed to recover the target loop transfer function. Simulation results of LQG/LTR, $H_{\infty}-LTR$are compared to demonstrate the good property of the proposed scheme.

  • PDF