DOI QR코드

DOI QR Code

Design of Robust Speed Controllers for Marine Diesel Engine

선박용 대형 디젤 기관의 강인 속도 제어기 설계

  • Received : 2011.03.28
  • Accepted : 2011.08.30
  • Published : 2011.09.30

Abstract

Energy saving is one of the most important factors for profits in marine transportation. In order to reduce the specific fuel oil consumption, the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of propulsion engine and propeller that has better efficiency as lower rotational speed. As the engine has lower speed the variation of rotational torque become larger because of the longer delay time in fuel oil injection process. In this study, robust control theory is applied to the design of engine speed controllers which are sub-optimal $H_{\infty}$ controller, $H_{\infty}$ loop-shaping controller and ${\mu}$-synthesis controller considering robust stability and robust performance. And the validity of these three controllers is investigated through the results of computer simulation.

에너지 절약은 해상운송분야에서 이익을 내기 위한 가장 중요한 요인 중 하나이다. 연료 소비율을 낮추기 위해서는 가능한 한 선박의 추진효율을 높여야만 한다. 추진효율은 추진기관과 낮은 회전속도에서 더 좋은 효율을 갖는 프로펠러의 조합에 의존한다. 기관은 저속이 될수록 연료분사과정에서의 지연시간으로 인해 회전 토크 변동이 심해진다. 본 연구에서는 강인 제어이론을 적용하여 강인 안정성과 강인 성능을 고려한 기관 속도제어기들, 즉 준최적 $H_{\infty}$제어기, $H_{\infty}$루프-성형 제어기 및 ${\mu}$-제어기를 설계한다. 컴퓨터 시뮬레이션 결과로부터 이들 3가지 제어기의 타당성을 검토한다.

Keywords

References

  1. Lyngso Marine, "Electronic Governor System : Type EGS900", STL07.C.32, pp. 9-18.
  2. Lyngso-Valmet Marine, "Electronic Governor System EGS2000", 960.200.311, pp. 18-19.
  3. Safonov, M.G., D.J.N. Limbeer and R.Y. Chiang, "Simplifying the $H_{\infty}$ theory via loop-shifting, matrix-pencil and descriptor concepts", Int. J. Control, vol. 50, no. 6, pp. 2467-2488, 1989. https://doi.org/10.1080/00207178908953510
  4. J.C. Doyle, K. Glover, Khargonekar, and B.A. Francis, "State-space solutions to standard $H_{\infty}$and $H_{\infty}$ control problems", IEEE Transaction Automatic Control, vol. 34, no. 8, pp. 831-847, 1989. https://doi.org/10.1109/9.29425
  5. K. Glover and J. C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an $H_{\infty}$-norm bound and relations to risk sensitivity", Systems & Control Letters, vol. 11, pp. 167-172, 1988. https://doi.org/10.1016/0167-6911(88)90055-2
  6. Da-Wei Gu, P. Hr. Petkov and M. M. Konstantinov, Robust Control Design with Matlab, Springer, pp. 13-97, 2005.
  7. R. Kondo, "How to Study Robust Control", J. of SICE, vol. 30, no. 8, pp. 737-738, 1991.
  8. H. Kimura, "Recent development of design theory of control systems", J. of SICE, vol.31, no. 1, pp. 78-84, 1992.
  9. R. Kawatani, "Synthesis of robust control systems using loop shaping method", System, Control and Information, vol. 36, no.12, pp. 776-783, 1992.
  10. Kwakernaak, H., "Robust Control and $H_{\infty}$-optimization-Tutorial Paper", Automatica, vol. 29, no. 2, pp. 255-273, 1993. https://doi.org/10.1016/0005-1098(93)90122-A
  11. $\mu$-analysis and synthesis toolbox user's guide, The Math Works Inc.
  12. Da-Wei Gu, P.Hr. Petkov and M.M. Konstantinov, Robust Control Design with Matlab, Springer, pp. 13-97, 2005.