• Title/Summary/Keyword: 조선의 수학

Search Result 204, Processing Time 0.021 seconds

Gou Gu Shu and Theory of equations in Chosun (조선(朝鮮)의 구고술(勾股術)과 방정식론)

  • Yun, Hye-Soon
    • Journal for History of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.7-20
    • /
    • 2011
  • Investigating constructions of equations by Gou gu shu(勾股術) in Hong Jung Ha(洪正夏)'s GuIlJib(九一集), Nam Byung Gil(南秉吉)'s YuSiGuGoSulYoDoHae(劉氏勾股術要圖解) and Lee Sang Hyuk(李尙爀)'s ChaGeunBangMongGu(借根方蒙求), we study the history of development of Chosun mathematics. We conclude that Hong's greatest results have not been properly transmitted and that they have not contributed to the development of Chosun mathematics.

A study on the contents related to the plane figures of Joseon-Sanhak in the late 18th century (18세기 후반 조선산학서에 나타난 평면도형 관련 내용 분석)

  • Choi, Eunah
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.47-62
    • /
    • 2022
  • This study investigated the contents related to the plane figures in the geometry domains of Joseon-Sanhak in the late 18th century and focused on changes in explanations and calculation methods related to plane figures, the rigor of mathematical logic in the problem-solving process, and the newly emerged mathematical topics. For this purpose, We analyzed , and written in the late 18th century and and written in the previous period. The results of this study are as follows. First, an explanation that pays attention to the figures as an object of inquiry, not as a measurement object, and a case of additional presentation or replacing the existing solution method was found. Second, descriptions of the validity of calculations in some problems, explanations through diagrams with figure diagrams, clear perceptions of approximations and explanations of more precise approximation were representative examples of pursuing the rigor of mathematical logic. Lastly, the new geometric domain theme in the late 18th century was Palsun corresponding to today's trigonometric functions and example of extending the relationship between the components of the triangle to a general triangle. Joseon-Sanhak cases in the late 18th century are the meaningful materials which explain the gradual acceptance of the theoretical and argumentative style of Western mathematics

A Study on the Using of Chosun-Sanhak for the Enriched Learning about Pi (원주율에 대한 심화학습을 위한 조선산학의 활용 연구)

  • Choi, Eunah
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.811-831
    • /
    • 2017
  • The purpose of this study is to analyze the contents of pi of Chosun-sanhak and organize the teaching and learning activities to help to understand the concept of pi deeply using the analysis results. The results of this study are as follows. First, Chosun-sanhak used various approximate values of pi and those were represented as the form to reveal the meaning of the ratio of radius and circumference. Second, There were the freedom of selection of the approximate values of pi suitably. Lastly, the enriched leaning about pi need to draw a distinction pi from approximate values of pi, choose the suitable approximate values of pi and compare the method of calculation of circumference and the area of circle of Chosun-sanhak and today's mathematics. In conclusion, I proposed several issues which is worth exploring further in relation to pi and Chosun-Sanhak.

Prospective Elementary School Teachers' Perception on Using the History of Korean Mathematics (예비 초등교사의 한국수학사 활용에 대한 인식)

  • Choi, Eunah
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.491-511
    • /
    • 2015
  • This study analyzed the perception of prospective elementary school teachers in relation to using the history of Korean mathematics. The results of this study showed that the pre-service teachers realized using the history of Korean mathematics more importantly than the history of mathematics. They thought that the contents of the history of Korean mathematics should be increased in mathematics education and pre-service teacher education. The participation experience in teacher education about the history of Korean mathematics had a positive effect on the perception of pre-service teachers. Finally, this paper asserted that teacher education is the key to the teacher perception on and using of the history of Korean mathematics.

Research on the history of astronomy and the role of astronomer

  • Lee, Yong Bok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.37.3-38
    • /
    • 2017
  • 우리나라의 천문 관측의 기록의 역사는 삼국시대 이전 선사시대까지 거슬러 올라간다. 선사시대에는 천문 현상을 바위나 건축 유물에 기록을 남기고 역사를 기록하기 시작한 이후에는 일반 역사 기록 속에 항상 함께 기록하고 있다. 특히 동양은 역사기록 자체가 인간이 남긴 자취뿐만 아니라 하늘과 땅에 일어나는 다양한 자연 현상도 함께 동시에 남겼다. 고대로부터 인간은 하늘과 땅과 항상 유기적인 관계를 갖는다고 믿었기 때문이다. 우리나라는 정사로서 가장 오래된 역사 기록인 삼국사기와 삼국유사에 일식, 혜성 출현, 별똥과 유성우, 달과 행성 운행, 초신성 관측 등 250회 이상의 천문 기록이 나타나며 대부분 실제로 일어났던 사실을 그대로 기록하고 있다. 그 후 고려사와 조선왕조실록에는 이루 헤아릴 수 없을 정도로 많은 천문 기록을 남기고 있다. 이러한 천문 기록뿐만 아니라 일찍부터 중국으로부터 역법을 도입하여 천체 운행을 이용하여 우리 생활에 필요한 시각법을 사용하고 달력을 제작하였다. 특히 달과 태양의 운행 원리를 파악하여 일식과 월식을 직접 추산하였다. 역법의 운용은 천체 운행의 원리를 이해하고 수학을 발전시키는데 큰 역할을 하였다. 이러한 천문 관측과 정확한 시각 체계를 유지하고 정밀한 역법을 사용하기 위해서는 끊임없이 천체를 정밀하게 관측할 필요성이 있다. 이를 위해 다양한 천문 관측기기를 개발하고 제작하였다. 천문 의기는 천체의 위치를 측정하고 천체의 운행을 이용하여 시각 체계를 유지 관리를 위해 필수불가결한 기기이다. 우리나라 천문학 발달의 네 가지 축인 천문(天文), 역법(曆法), 의상(儀象), 구루(晷漏)등은 조선 초기 세종시대 완성을 보게 되었다. 이는 단일 왕조가 이룬 업적으로 다른 문화권에서 볼 수 없을 정도의 우수한 과학 기술의 유산이다. 특히 칠정산내편과 외편의 완성은 중국의 역법에서 벗어나 독자적인 역법을 완성하려는 시도였다. 이 모든 것은 당시 이를 주도하던 세종대왕의 지도력과 천문학과 수학에 뛰어난 천문학자가 이룩한 업적이다. 그 후 조선 중기로 접어들면서 쇠퇴하다가 임진왜란과 병자호란을 겪으면서 거의 모든 과학기술의 유산이 파괴되거나 유실되었다. 조선 현종 이후에 세종시대의 유산을 복원하려는 노력 중에 중국을 통하여 서양의 천문학을 도입하게 되었다. 중국에 들어와 있던 서양 선교사들이 주도하여 중국의 역법 체계를 바꾸었다. 즉, 일식과 월식의 예측력이 뛰어난 시헌력을 만들어 사용하기 시작했다. 시헌력에는 서양의 대수학과 기하학을 이용한 다양한 수학적 기법이 사용되었다. 조선 후기에 이 시헌력을 익히기 위한 노력을 하는 과정에서 서양의 수학과 기하학을 접하게 되고 새로운 우주 체계를 도입하게 되었다. 특히 서양의 천문도와 지도 제작에 기하학의 투사법이 사용되어 복잡한 대수학적 계산을 단순화시켜 활용하였다. 조선 후기에 전문 수학자뿐만 아니라 많은 유학자들도 서양의 수학과 기하학에 깊은 관심을 갖고 연구하였다. 고천문학 전체를 조망해 볼 때 핵심은 현대의 천체물리학이 아니라 위치천문학이다. 따라서 고천문학을 연구하는데 필수적인 요소가 지구의 자전과 공전 운동에 의해서 일어나는 현상과 세차운동에 의한 효과를 정확하게 이해하고 있어야 한다. 그중에서도 구면천문학과 천체역학에 대한 원리를 알고 있는 상태에서 접근해야 한다. 고천문학의 중심인 천문(天文), 역법(曆法), 의상(儀象), 구루(晷漏) 등의 내용은 이러한 위치천문학이 그 기본 골격을 이루고 있다. 예를 들어 고려사의 천문 현상을 모아 놓은 천문지(天文志)와 일식과 월식 계산 원리가 들어있는 역지(曆志)를 연구하기 위해서는 위치천문학의 기본 개념 없이는 연구하는데 한계가 있다. 인문학을 전공하는 학자가 고천문을 연구하는데 가장 큰 걸림돌이 되는 점이 위치 천문학의 기본 개념 없이 접근하는 것이다. 심지어 조선시대 유학자들조차 저술한 많은 천문 관련 기록을 보면 상당부분 천체 운행 원리를 모르고 혼란스럽게 기록된 내용이 적지 않다. 우리나라 수학사를 연구할 경우 방정식 해법, 보간법, 삼각법, 일반 기하 원리에 대한 것을 연구하는데 큰 문제가 없다. 그러나 천문 현상이나 천문 의기 제작에 사용되는 수학은 천문 현상에 대한 원리를 모르면 접근하기 어렵게 된다. 수학사를 하더라고 기본적인 위치 천문학의 기본개념을 이해하고 있어야 폭 넓은 수학사 연구에 성과를 거둘 수 있다. 의외로 천문 현상 추산을 위해 사용되는 수학이나 기하학 원리가 수학사 연구에 중요한 요소가 된다. 더구나 한문으로 기록된 천문 내용을 한문 해독이 능숙한 학자라 하더라도 내용을 모르고 번역하면 도무지 무슨 내용인지 알아볼 수 없는 경우가 많다. 그래서 한문으로 된 천문 현상 기록이나 역법 관련 기록의 번역 내용 중에 많은 오역을 발견하게 된다. 문제는 한번 오역을 해 놓으면 몇 십 년이고 그대로 그 내용을 무비판적으로 인용하게 되고 사실로서 인정하는 오류를 범하게 된다. 이 때문에 우리 선조들이 남긴 고천문 관련 기록에 관한 이해는 우리 현대 천문학자의 역할이 대단히 크다.

  • PDF

A historical research on the actual state of the publication of elementary school mathematics textbooks by the Government-General of Joseon during the Japanese colonial period (일제강점기 조선총독부의 초등학교 수학 교과서 발행 실태 조사 연구)

  • CHOI Jong Hyeon;PARK Kyo Sik
    • Journal for History of Mathematics
    • /
    • v.36 no.3
    • /
    • pp.37-57
    • /
    • 2023
  • In the history of elementary school mathematics education in Korea, the period led by the Government-General of Joseon during the Japanese colonial period cannot be omitted. As a way to grasp the real state of elementary school mathematics education at that time, there is a method of analyzing elementary school mathematics textbooks published by the Government-General of Joseon. However, the actual state of the publication of them was not sufficiently known. For this reason, this study surveys the actual state of the publication of those textbooks. To this end, real information on textbooks owned currently by various institutions and information on the publication of those textbooks in the official gazette and documents of the Government-General of Joseon were checked and organized.

A Study on the Meaning of Reflection and Meta-Cognition in Mathematics Education (반성과 메타인지의 의미에 대한 고찰)

  • Hwang, Hye Jeang;Kim, Soo-Jin
    • Communications of Mathematical Education
    • /
    • v.33 no.1
    • /
    • pp.35-45
    • /
    • 2019
  • Reflection and Meta-Cognition became the centered interest as main subjects of the mathematics education studies together with problem solving education in the 1980s. And lots of researches who have concerned with them have been even progressed actively. But, the concept of the reflection and particularly meta-cognition has been pointed out continually because of its ambiguity and uncertainty. There is almost no researches intended to reveal the concept itself. Although the status of the reflection and/or meta-cognition in mathematics education. Therefore, it is significant at this point in time that the work of examining the concept of the reflection and meta-cognition be accomplished. By this reason, this study tried to examine and find out the essential nature of the concept of reflection and meta-cognition in aspects of mathematics education.

조선조대의 수학문제 취급의 허실 (1)

  • 유인영
    • Journal for History of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-68
    • /
    • 2002
  • Mathematical problems are classified into two families, i.e. the solvable ones and the others. There are some such problems in the documentary records of tile Chosun Dynasty ages. In those days, a ‘normal right triangle’ whose ratio of the three sides in the triangle is 3 : 4 : 5 was defined and had been used tacitly. This paper intends to introduce the problems having errors.

  • PDF

Chosun mathematics in the 17th Century and Muk Sa Jib San Beob (17세기 조선 산학(朝鮮 算學)과 ${\ll}$묵사집산법(默思集筭法)${\gg}$)

  • Jin, Yuzi;Kim, Young-Wook
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.15-28
    • /
    • 2009
  • In this paper, we study the 17th Century Chosun's mathematics book ${\ll}$Muk Sa Jib San Beob${\gg}$ written by Chosun's mathematician Kyeong Seon Jing. Our study of thebook shows the ${\ll}$Muk Sa Jip San Beop${\gg}$ as an important 17th Century mathematics book and also as a historical data showing the mathematical environment of 17th Century Chosun.

  • PDF

Park Yul and His San Hak Won Bon(算學原本) (박율의 산학원본)

  • Kim, Young-Wook;Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.1-16
    • /
    • 2005
  • Chosun dynasty mathematician Park Yul (1621 - ?) wrote San Hak Won Bon(算學原本) which was posthumously published in 1700 by his son Park Du Se (朴斗世). It is the first mathematics book whose publishing date is known, although we have Muk Sa Jib San Bub (默思集算法) by Gyung Sun Jing (慶善徵, 1616-?). San Hak Won Bon is the first Chosun book which deals with tian yuan shu (天元術) and was quoted by many Chosun authors. We do find it in the library in Korea University. In this paper, we investigate its contents together with its historical significance and influences to the development of Chosun dynasty Mathematics and conclude that Park Yul is one of the most prominent Chosun dynasty mathematicians.

  • PDF