DOI QR코드

DOI QR Code

A Study on the Meaning of Reflection and Meta-Cognition in Mathematics Education

반성과 메타인지의 의미에 대한 고찰

  • Received : 2018.10.08
  • Accepted : 2019.01.14
  • Published : 2019.02.15

Abstract

Reflection and Meta-Cognition became the centered interest as main subjects of the mathematics education studies together with problem solving education in the 1980s. And lots of researches who have concerned with them have been even progressed actively. But, the concept of the reflection and particularly meta-cognition has been pointed out continually because of its ambiguity and uncertainty. There is almost no researches intended to reveal the concept itself. Although the status of the reflection and/or meta-cognition in mathematics education. Therefore, it is significant at this point in time that the work of examining the concept of the reflection and meta-cognition be accomplished. By this reason, this study tried to examine and find out the essential nature of the concept of reflection and meta-cognition in aspects of mathematics education.

반성적 사고와 메타인지는 학생들의 수학적 사고력 향상에 핵심적인 역할을 한다고 하여도 과언이 아니다. 특히, Schoenfeld(1987)는 메타인지라는 용어에 대해 수학 교사들이 나타낸 반응을 소개하면서 메타인지란 연구자를 위한 전문어일 뿐이며 연구자가 아닌 입장에서 메타인지는 종잡을 수 없는 전문 용어라고 하였다. 이는 메타인지 개념의 불명확성을 나타내고 있다고 하겠다. 따라서 수학교육에서의 반성과 메타인지에 대한 의미를 탐색해 보는 것은 의미 있는 일일 것이다. 본 연구에서는 주요 수학 교수 학습론에서의 반성의 의미를 살펴보고, 또 메타인지의 의미와 역할을 살펴보고 문제 해결 과정에서의 반성과 메타인지를 결부시켜 모색해 봄으로써 궁극적으로 반성과 메타인지에 관한 이해를 도모해 보고자 하였다.

Keywords

SHGHFM_2019_v33n1_35_f0001.png 이미지

[그림 Ⅱ-1] 지식 구조 형성과 검증을 위한 지휘 체계(황혜정 외, 2016)

SHGHFM_2019_v33n1_35_f0002.png 이미지

[그림 Ⅲ-1] 메타인지의 개념

SHGHFM_2019_v33n1_35_f0003.png 이미지

[그림 Ⅵ-1] 문제 해결 과정에서 반성과 메타인지의 역할

References

  1. Kim Soo-Mi (1992). A Study on Metacognition in Mathematics Education. Journal of the Korea society of educational studies in mathematics, 9(2), 95-104.
  2. Kim Soo-Mi & Kim Yeon-Sik (1996). A Study on the Concept of Metacognition in Mathematics Education. Journal of the Korea society of educational studies in mathematics, 6(1), 111-123.
  3. Kim Yeon-Sik & Chong Yeong Ok (1997). A Study on Freudenthal"s Mathematising Instruction Theory. Journal of the Korea society of educational studies in mathematics, 7(2), 1-23.
  4. Paik Suk-Yoon (1995). The Search for a Way to Teach Metacognitive Thinking Skills Useful for Problem Solving. Journal of the Korea society of educational studies in mathematics, 5(2), 51-60.
  5. Woo Jeung-Ho (2013). The Principle and Method for Teaching and Learning Mathematics. Seoul National University Publisher.
  6. Yu Hyun Joo (1996). Problem solving and Meta-cognition. Journal of the Korea society of educational studies in mathematics, 6(1), 63-73.
  7. Jeong Eun-sil (1993). Considerations on Polya's Mathematical Inquiry. Journal of the Korea society of educational studies in mathematics, 3(1), 59-74.
  8. Hwang Hye Jeang, Na Geo Soo, Choi Seung Hyun, Park Kyoung Mi, Rhin Jae Hoon & Seo Dong Yeop (2016). The New Theory of Mathematics Education. Seoul: Moon Eum Sa.
  9. Freudenthal, Hans (1991). Revisiting Mathematics Education. 우정호, 정은실, 박교식, 유현주, 정영옥, 이경화 역(2008), 프로이덴탈의 수학교육론. 서울: 경문사.
  10. Lakatos, Imre (1976). Proofs and refutations : the logic of mathematical discovery. 우정호 역(2001). 수학적 발견의 논리. 서울: 민음사.
  11. Lester, Jr. F. K. and Garofalo J. (1985). Metacognition, Cognitive Monitoring, and Mathematical Performance. Journal for Research in Mathematics Educaton, 16, 163-176. https://doi.org/10.2307/748391
  12. Polya, G. (1957), How to Solve it. 2nd ed., New York: Doubleday & Company, Inc..
  13. Schoenfeld, A. H. (1987). What's All the Fuss about Metaconition? In A. H. Schoenfeld(ed), Cognitive Science and Mathematics Education, 189-215. Hillsdale, NJ: Lawrence Erlbaum.
  14. Skemp, R. R. (1987). The Psychology of Learning Mathematics. 황우형 역(2000). 수학 학습 심리학. 서울: 사이언스북스.