• Title/Summary/Keyword: 조선산학

Search Result 202, Processing Time 0.022 seconds

Chosun Mathematics in the early 18th century (18세기(世紀) 초(初) 조선(朝鮮) 산학(算學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • After disastrous foreign invasions in 1592 and 1636, Chosun lost most of the traditional mathematical works and needed to revive its mathematics. The new calendar system, ShiXianLi(時憲曆, 1645), was brought into Chosun in the same year. In order to understand the system, Chosun imported books related to western mathematics. For the traditional mathematics, Kim Si Jin(金始振, 1618-1667) republished SuanXue QiMeng(算學啓蒙, 1299) in 1660. We discuss the works by two great mathematicians of early 18th century, Cho Tae Gu(趙泰耉, 1660-1723) and Hong Jung Ha(洪正夏, 1684-?) and then conclude that Cho's JuSeoGwanGyun(籌 書管見) and Hong's GuIlJib(九一集) became a real breakthrough for the second half of the history of Chosun mathematics.

A Study on the Using of Chosun-Sanhak for the Enriched Learning about Pi (원주율에 대한 심화학습을 위한 조선산학의 활용 연구)

  • Choi, Eunah
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.811-831
    • /
    • 2017
  • The purpose of this study is to analyze the contents of pi of Chosun-sanhak and organize the teaching and learning activities to help to understand the concept of pi deeply using the analysis results. The results of this study are as follows. First, Chosun-sanhak used various approximate values of pi and those were represented as the form to reveal the meaning of the ratio of radius and circumference. Second, There were the freedom of selection of the approximate values of pi suitably. Lastly, the enriched leaning about pi need to draw a distinction pi from approximate values of pi, choose the suitable approximate values of pi and compare the method of calculation of circumference and the area of circle of Chosun-sanhak and today's mathematics. In conclusion, I proposed several issues which is worth exploring further in relation to pi and Chosun-Sanhak.

역사속 과학인물 - 중국의 '산학계몽' 맥 이어준 조선조 수학자 "김시진(1618~1667년)"

  • Park, Seong-Rae
    • The Science & Technology
    • /
    • v.33 no.4 s.371
    • /
    • pp.32-34
    • /
    • 2000
  • 조선조 현종때 관리였던 김시진(1618~1667년)은 중국판 수학책 "산학계몽"을 우리나라서 인쇄 보급해 수학자 양성에 큰 공을 세운 인물이다. 중국 송나라때인 1299년 주세걸이 쓴 이 책은 중국의 수학사에서 빼놓을 수 없는 귀중한 책이었다. 그런데 이 책이 5백년의 세월이 흐르는 동안 중국에서는 사라져버려 조선에서 구해다가 다시 찍어낸 것이 지금의 "산학계몽"이다. 사무에 통달하고 산법이 밝았던 김시진은 현종때 경기 좌균전사의 벼슬을 지내고 경상감사까지 오른 당대의 수학자였다.

  • PDF

Mathematics in Chosun Dynasty and Si yuan yu jian (조선(朝鮮) 산학(算學)과 사원옥감(四元玉鑑))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In the 19th century, Chosun mathematicians studied the most distinguished mathematicians Qin Jiu Shao(泰九韶), Li Ye(李治) Zhu Shi Jie(朱世傑) in Song(宋), Yuan(元) Dynasty and they established a solid theoretical development on the theory of equations. These studies began with their study on Si yuan yu jian xi cao(四元玉鑑細艸) compiled by Luo Shi Lin(羅士琳). Among those Chosun mathematicians, Lee Sang Hyuk(李尙爀, $1810{\sim}?$) and Nam Byung Gil(南秉吉 $1820{\sim}1869$) contributed prominently to the research. Relating to Si yuan yu jian xi cao, Nam Byung Gil and Lee Sang Hyuk compiled OgGamSeChoSangHae(玉監細艸詳解) and SaWonOgGam(四元玉鑑), respectively and then later they wrote SanHakJeongEi(算學正義) and IkSan(翼算), respectively. The latter in particular contains most creative results in Chosun Dynasty mathematics. Using these books, we study the relation between the development of Chosun mathematics and Si yuan yu jian.

  • PDF

Mathematical Structures and SuanXue QiMeng (수학적(數學的) 구조(構造)와 산학계몽(算學啓蒙))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.26 no.2_3
    • /
    • pp.123-130
    • /
    • 2013
  • It is well known that SuanXue QiMeng has given the greatest contribution to the development of Chosun mathematics and that the topics and their presentation including TianYuanShu in the book have been one of the most important backbones in the developement. The purpose of this paper is to reveal that Zhu ShiJie emphasized decidedly mathematical structures in his SuanXue QiMeng, which in turn had a great influence to Chosun mathematicians' structural approaches to mathematics. Investigating structural approaches in Chinese mathematics books before SuanXue QiMeng, we conclude that Zhu's attitude to mathematical structures is much more developed than his precedent ones and that his mathematical structures are very close to the present ones.

Chosun mathematics in the 17th Century and Muk Sa Jib San Beob (17세기 조선 산학(朝鮮 算學)과 ${\ll}$묵사집산법(默思集筭法)${\gg}$)

  • Jin, Yuzi;Kim, Young-Wook
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.15-28
    • /
    • 2009
  • In this paper, we study the 17th Century Chosun's mathematics book ${\ll}$Muk Sa Jib San Beob${\gg}$ written by Chosun's mathematician Kyeong Seon Jing. Our study of thebook shows the ${\ll}$Muk Sa Jip San Beop${\gg}$ as an important 17th Century mathematics book and also as a historical data showing the mathematical environment of 17th Century Chosun.

  • PDF

Gou Gu Shu in the 19th century Chosun (19세기(世紀) 조선(朝鮮)의 구고술(句股術))

  • Hong, Sung-Sa;Hong, Young-Hee;Kim, Chang-Il
    • Journal for History of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2008
  • As a sequel to the previous paper Gou Gu Shu in the 18th century Chosun, we study the development of Chosun mathematics by investigating that of Gou Gu Shu in the 19th century. We investigate Gou Gu Shu obtained by Hong Gil Ju, Nam Byung Gil, Lee Sang Hyuk and Cho Hee Soon among others and find some characters of the 19th century Gou Gu Shu in Chosun.

  • PDF

Solutions of Equations in Chosun Mathematics (조선산학(朝鮮算學)의 방정식 해법(解法))

  • Kim, Chang-Il;Yun, Hye-Soon
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2009
  • we know that Zeng Cheng Kai Fang Fa is the generalization of the method of square roots and cube roots of ancient through the investigation of China mathematics. In this paper, we have research on traditional solutions equations of China mathematics and the development solutions of equations used by Chosun mathematicians.

  • PDF

A Comparison between Suanxue qimeng(Introduction to Mathematical Studies} and Muksa-jipsanbup (산학계몽과 묵사집산법의 비교)

  • Her, Min
    • Journal for History of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Suanxue qimeng(算學啓蒙) is the introduction to mathematics which greatly influenced Chosun mathematics, Muksa-jipsanbup(默思集算法) imitated the style and the contents of Suanxue qimeng, but contains a lot of problems, secondary solutions and topics which is not in Suanxue qimeng and tried to achieve educational improvement. However Muksa-jipsanbup could not use the method of rectangular arrays(方程術) because it excluded the method of positive and negative(正負術), and has a serious limitation in applying the method of extracting roots by iterated multiplication(增乘開方法) because it avoided the technique of the celestial element(天元術).

  • PDF