• 제목/요약/키워드: 조기수렴

검색결과 56건 처리시간 0.032초

조기수렴 저감을 위한 해밍거리와 적합도의 혼합 유전 연산자 (Hybrid Genetic Operators of Hamming Distance and Fitness for Reducing Premature Convergence)

  • 이홍규
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.170-177
    • /
    • 2014
  • 유전 알고리즘은 강인한 탐색과 최적화 기술이기는 하나 조기 수렴과 국부 최적해에 수렴하는 문제점들을 내포하고 있다. 모집단의 다양성이 작은 값으로 수렴할수록 탐색능력이 감소하고, 국부 최적해에 수렴하지만, 모집단의 다양성이 높은 값으로 수렴할수록 탐색능력이 증가하고 전역 최적해에 수렴할 수 있으나 유전 알고리즘은 발산할 수도 있다. 유전 알고리즘이 전역 최적해에 수렴하는 것을 보장하기 위해서는 유전 연산자가 적절하게 선정되어야 한다. 본 논문에서는 조기 수렴으로부터 벗어나기 위하여 모집단의 다양성을 유지하도록 평균해밍거리와 적합도 값을 혼합한 함수를 이용한 유전 연산자들을 제안하였다. 모의실험을 통하여 다양성의 유지를 위한 돌연변이 연산자와 수렴 특성의 향상을 위한 다른 유전자들의 효과를 확인할 수 있었으며, 본 논문에서 제안한 유전 연산자들이 조기 수렴이나 국부 최적해에 수렴하는 경우를 피하는데 유용한 방법임이 확인되었다.

Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구 (A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism)

  • 송동호;이영일;김태형
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.527-531
    • /
    • 2012
  • 본 논문에서는 종래의 PSO 알고리즘 성능저하의 주요 원인들 중 하나인 입자들의 조기수렴 현상을 개선한 DPSO-QI (Distributed PSO with quantum-infusion mechanism) 기법을 제안한다. DPSO-QI 알고리즘은 다음과 같은 두 가지 특징을 지닌다. 첫째, 분산형 구조의 PSO 기법을 도입한다. 이는 먼저 적절한 수의 입자들로 소그룹을 형성하고, 최적해 탐색에 필요한 다양한 정보의 교환이 각 소그룹 내에서만 이루어지도록 한 기법이다. 이러한 기법을 바탕으로 입자들의 탐색 다양성을 증대시킴으로서 조기수렴 현상을 감소시키는 효과를 달성할 수 있다. 둘째, 상기의 입자 소그룹에 Quantum-infusion (QI) 메커니즘에 기반 한 기법을 도입시킨다. 이를 통해 입자들의 전역 최적해 탐색 정밀도를 보다 향상시킬 수 있다. 끝으로 다양한 수치예제를 통하여 제안하는 새로운 PSO 기법이 종래의 방식들에 비해 매우 뛰어난 성능을 구현할 수 있음을 입증하고자 한다.

유전 알고리즘을 이용한 Maximal Covering 문제의 해결 (A Genetic Algorithm for the Maximal Covering Problem)

  • 박태진;이용환;류광렬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.502-509
    • /
    • 2002
  • Maximal Covering 문제(MCP)란 행렬 상에서 n개의 열(column) 중 p개를 선택하여 m개의 행(row)중 최대한 많은 행을 cover하는 문제로 정의된다. 본 논문에서는 MCP를 유전 알고리즘(Genetic Algorithm)으로 해결하기 위해 문제에 적합하게 설계된 교차 연산자(crossover operator)와 비발현 유전인잔(unexpressed gene)를 가진 새로운 염색체 구조를 제시한다. 해결하고자 하는 대상 MCP의 규모가 매우 큰 경우 전통적인 임의교차(random crossover) 방법으로는 좋은 결과를 얻기가 힘들다. 따라서 본 연구에서는 그리디 교차(greedy crossover) 방법을 제시하여 문제를 해결한다. 그러나 이러한 그리디 교차를 사용하더라도 조기 수렴 등의 문제로 인해 타부 탐색 등의 이웃해 탐색 방법에 비해 그리 좋은 결과를 얻기가 힘들다. 본 논문은 이러한 조기 수렴 문제를 해결하고 다른 이웃에 탐색 방법보다 더 좋은 결과를 얻기 위해 비발현 유전인자(unexpressed gene)를 가진 염색체를 도입하여 해결함을 특징으로 한다. 비발현 유전인자는 교차 과정에서 자식 염색체의 유전인자로 전달되지 않은 정보 중 나중에라도 유용할 가능성이 보이는 정보를 보존하는 역할을 하여 조기 수렴 문제를 해결하는데 도움을 주어 보다 나은 결과를 얻을 수 있게 해준다. 대규모 MCP를 해결하는 실험에서 새로운 비발현 유전인자를 적용한 유전 알고리즘이 기존의 유전 알고리즘뿐만 아니라 다른 탐색 기법에 비해 더욱 좋은 성능을 보여줌을 확인하였다.

  • PDF

번들조정법에 의한 지상시설물 경사면 해석의 정확도 향상에 관한 연구 (Study on the Improvement of Accuracy in a Plain Slope Analysis Using the Bundle Adjustment)

  • 유복모;조기성;허두홍
    • 한국측량학회지
    • /
    • 제7권1호
    • /
    • pp.59-65
    • /
    • 1989
  • 본 연구에서는 대상물의 좌표결정을 위해 해석적사진측량에서 사용되고 있는 번들조정법을 이용하여, 지상시설물의 경사에 마른 지상기준점의 배치형태와 수렴촬영시 수렴각의 변화에 따른 3차원 좌표의 오차특성들을 분석하여, 최적기준점배치 및 수렴각을 제시하였다. 따라서 일반지상시설물의 제약적인 주변환경으로 인해 수렴수평촬영을 할 수 없는 경우 편각수렴촬영방법에 의해 지상시설물의 경사면 해석에 있어서의 정확도를 크게 향상시킬 수 있었다.

  • PDF

개체간 해밍 거리 기반의 변이연산을 적용한 유전알고리즘을 이용한 다차원 배낭 문제 탐색 (Genetic Algorithm Applying Modified Mutation Operator Based on Hamming Distance for Solving Multi-dimensional Knapsack Problem)

  • 정재훈;이종현;안창욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1728-1731
    • /
    • 2012
  • 본 논문에서는 부모 개체의 해밍 거리에 기반하여 선택적 변이연산을 적용한 유전알고리즘을 제안한다. 유전자 형이 매우 유사한 개체들 간의 유전연산은 알고리즘의 탐색성능을 저하시키고 조기 수렴의 가능성을 증가시킨다. 본 논문에서는 이러한 현상을 극복하기 위하여, 교차연산 시 선택된 두 부모 개체간의 해밍 거리에 따라 그 값이 낮으면 교차연산 후 생성된 두 자식 개체 중 한쪽에게 높은 변이확률을 적용하고 다른 한쪽 자식은 부모와 비슷한 유전자 형으로 탐색을 계속하게 하여 조기 수렴을 방지하면서 해집단의 다양성 유지 기능을 향상 시켰다. 제안한 유전 알고리즘을 다차원 배낭 문제에 적용한 결과, 같은 조건에서 단순 유전 알고리즘(SGA) 보다 향상된 탐색 성능을 보여주었다.

재시동 조건을 이용한 유전자 알고리즘의 성능향상에 관한 연구 (A Study on Improvement of Genetic Algorithm Operation Using the Restarting Strategy)

  • 최정묵;이진식;임오강
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.305-313
    • /
    • 2002
  • 유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.

적응 분할법에 기반한 유전 알고리즘 및 그 응용에 관한 연구 (A Study on Adaptive Partitioning-based Genetic Algorithms and Its Applications)

  • 한창욱
    • 융합신호처리학회논문지
    • /
    • 제13권4호
    • /
    • pp.207-210
    • /
    • 2012
  • 유전 알고리즘은 확률에 기반한 매우 효과적인 최적화 기법이지만 지역해로의 조기수렴과 전역해로의 수렴 속도가 느리다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 적응 분할법에 기반한 유전 알고리즘을 제안하였다. 유전 알고리즘이 전역해를 효과적으로 찾도록 하는 적응 분할법은 최적화의 복잡도를 줄이기 위해 탐색공간을 적응적으로 분할한다. 이러한 적응 분할법은 탐색공간의 복잡도가 증가할수록 더 효과적이다. 제안된 방법을 테스트 함수의 최적화 및 도립진자 제어를 위한 퍼지 제어기 설계 최적화에 적용하여 그 유효성을 보였다.

상관 계수를 이용한 다층퍼셉트론의 계층별 학습 (A Layer-by-Layer Learning Algorithm using Correlation Coefficient for Multilayer Perceptrons)

  • 곽영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권8호
    • /
    • pp.39-47
    • /
    • 2011
  • 다층퍼셉트론의 계층별 학습 방법의 하나인 Ergezinger 방법은 출력 노드가 1개로 구성되어 있고, 출력층의 가중치를 최소자승법으로 학습하기 때문에 출력층의 가중치에 조기포화 현상이 발생할 수 있다. 이런 조기 포화현상은 학습 시간과 수렴 속도에 장애가 된다. 따라서, 본 논문은 Ergezinger의 학습 방법을 출력층에서 벡터 형태로 학습할 수 있는 알고리즘으로 확대하고 학습 시간과수렴 속도를 개선하기 위해서 학습 상수를 도입한다. 학습상수는 은닉층 가중치 조정 시, 새로이 계산된 가중치와 기존 가중치의 상관 관계를 계산하여 학습 상수에 반영하는 가변적인 방법이다. 실험은 제안된 방법과 기존 방법의 비교를 위해서 iris 문제와 비선형 근사화 문제를 대상으로 실험하였다. 실험에서, 제안 방법은 기존 Ergezinger 방법보다 학습 시간과 수렴 속도에서 우수한 결과를 얻었으며, 상관 관계를 고려한 CPU time 측정에서도 제안한 방법이 기존 방법보다 약 35%의 시간을 절약할 수 있었다.

보조 모집단을 이용한 유전자 알고리즘의 수렴속도 개선 (Improvement of the GA's Convergence Speed Using the Sub-Population)

  • 이홍규;이재오
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.6276-6281
    • /
    • 2014
  • 유전자 알고리즘은 탐색과 최적화 문제에 대한 효과적인 방법으로 이용되고 있으나 다수의 정점이 있는 다중정점 함수에 대한 응용에 있어서는 지역해에 조기 수렴하여 고착되는 등 전역 최적해를 찾는데 어려움이 있다. 이러한 문제는 탐색공간을 충분히 탐색할 수 있는 모집단의 다양성이 부족한 데 기인하는 것이며 해결방법으로 니칭 방법과 크라우딩 방법 등이 소개되고 있다. 개체군의 다양성을 증가시키는 방법으로 지역해에 고착되지 않고 전역 최적해로 수렴되도록 하는 데 기본을 두고 있다. 본 논문에서는 다중정점 함수의 전역 최적해에 수렴하고 수렴속도를 높이는 방법으로 진화과정의 매 세대마다 탐색영역에 충분히 분포되도록 임의로 생성된 보조 모집단을 공급함으로서 안정적으로 전역 최적해로 수렴하는 방법을 제안하였다. 컴퓨터 모의실험을 통하여 본 논문에서 제안한 방법을 입증하였다.

유전자 알고리즘에 대한 수렴특성의 개선 (Improvement of Convergence Properties for Genetic Algorithms)

  • 이홍규
    • 한국항행학회논문지
    • /
    • 제12권5호
    • /
    • pp.412-419
    • /
    • 2008
  • 유전자 알고리즘은 효과적으로 최적의 해를 구하는 기법이나 진화연상산자의 선정에 따라 조기에 국부 최적해에 고착되어 전역 최적해로의 탐색을 어렵게 하는 문제점을 가지고 있다. 본 논문에서는 국부 최적해로 수렴하게 되는 원인을 분석하고, 국부 최적해에서 벗어나 전역 최적해로의 천이가 가능하도록 하는 방법을 제안하였다. 본 논문에서 사용한 방법은 평균 해밍거리에 따라 진화연산자를 가변시키는 방법으로서 국부 최적해에 고착되지 않도록 유전자에 다양성을 부여하여 지속적으로 모집단의 진화 특성을 유지하는 방법이다. 제안된 방법은 시뮬레이션을 통하여 효용성을 입증하였다.

  • PDF