유전 알고리즘은 강인한 탐색과 최적화 기술이기는 하나 조기 수렴과 국부 최적해에 수렴하는 문제점들을 내포하고 있다. 모집단의 다양성이 작은 값으로 수렴할수록 탐색능력이 감소하고, 국부 최적해에 수렴하지만, 모집단의 다양성이 높은 값으로 수렴할수록 탐색능력이 증가하고 전역 최적해에 수렴할 수 있으나 유전 알고리즘은 발산할 수도 있다. 유전 알고리즘이 전역 최적해에 수렴하는 것을 보장하기 위해서는 유전 연산자가 적절하게 선정되어야 한다. 본 논문에서는 조기 수렴으로부터 벗어나기 위하여 모집단의 다양성을 유지하도록 평균해밍거리와 적합도 값을 혼합한 함수를 이용한 유전 연산자들을 제안하였다. 모의실험을 통하여 다양성의 유지를 위한 돌연변이 연산자와 수렴 특성의 향상을 위한 다른 유전자들의 효과를 확인할 수 있었으며, 본 논문에서 제안한 유전 연산자들이 조기 수렴이나 국부 최적해에 수렴하는 경우를 피하는데 유용한 방법임이 확인되었다.
본 논문에서는 종래의 PSO 알고리즘 성능저하의 주요 원인들 중 하나인 입자들의 조기수렴 현상을 개선한 DPSO-QI (Distributed PSO with quantum-infusion mechanism) 기법을 제안한다. DPSO-QI 알고리즘은 다음과 같은 두 가지 특징을 지닌다. 첫째, 분산형 구조의 PSO 기법을 도입한다. 이는 먼저 적절한 수의 입자들로 소그룹을 형성하고, 최적해 탐색에 필요한 다양한 정보의 교환이 각 소그룹 내에서만 이루어지도록 한 기법이다. 이러한 기법을 바탕으로 입자들의 탐색 다양성을 증대시킴으로서 조기수렴 현상을 감소시키는 효과를 달성할 수 있다. 둘째, 상기의 입자 소그룹에 Quantum-infusion (QI) 메커니즘에 기반 한 기법을 도입시킨다. 이를 통해 입자들의 전역 최적해 탐색 정밀도를 보다 향상시킬 수 있다. 끝으로 다양한 수치예제를 통하여 제안하는 새로운 PSO 기법이 종래의 방식들에 비해 매우 뛰어난 성능을 구현할 수 있음을 입증하고자 한다.
Maximal Covering 문제(MCP)란 행렬 상에서 n개의 열(column) 중 p개를 선택하여 m개의 행(row)중 최대한 많은 행을 cover하는 문제로 정의된다. 본 논문에서는 MCP를 유전 알고리즘(Genetic Algorithm)으로 해결하기 위해 문제에 적합하게 설계된 교차 연산자(crossover operator)와 비발현 유전인잔(unexpressed gene)를 가진 새로운 염색체 구조를 제시한다. 해결하고자 하는 대상 MCP의 규모가 매우 큰 경우 전통적인 임의교차(random crossover) 방법으로는 좋은 결과를 얻기가 힘들다. 따라서 본 연구에서는 그리디 교차(greedy crossover) 방법을 제시하여 문제를 해결한다. 그러나 이러한 그리디 교차를 사용하더라도 조기 수렴 등의 문제로 인해 타부 탐색 등의 이웃해 탐색 방법에 비해 그리 좋은 결과를 얻기가 힘들다. 본 논문은 이러한 조기 수렴 문제를 해결하고 다른 이웃에 탐색 방법보다 더 좋은 결과를 얻기 위해 비발현 유전인자(unexpressed gene)를 가진 염색체를 도입하여 해결함을 특징으로 한다. 비발현 유전인자는 교차 과정에서 자식 염색체의 유전인자로 전달되지 않은 정보 중 나중에라도 유용할 가능성이 보이는 정보를 보존하는 역할을 하여 조기 수렴 문제를 해결하는데 도움을 주어 보다 나은 결과를 얻을 수 있게 해준다. 대규모 MCP를 해결하는 실험에서 새로운 비발현 유전인자를 적용한 유전 알고리즘이 기존의 유전 알고리즘뿐만 아니라 다른 탐색 기법에 비해 더욱 좋은 성능을 보여줌을 확인하였다.
본 연구에서는 대상물의 좌표결정을 위해 해석적사진측량에서 사용되고 있는 번들조정법을 이용하여, 지상시설물의 경사에 마른 지상기준점의 배치형태와 수렴촬영시 수렴각의 변화에 따른 3차원 좌표의 오차특성들을 분석하여, 최적기준점배치 및 수렴각을 제시하였다. 따라서 일반지상시설물의 제약적인 주변환경으로 인해 수렴수평촬영을 할 수 없는 경우 편각수렴촬영방법에 의해 지상시설물의 경사면 해석에 있어서의 정확도를 크게 향상시킬 수 있었다.
본 논문에서는 부모 개체의 해밍 거리에 기반하여 선택적 변이연산을 적용한 유전알고리즘을 제안한다. 유전자 형이 매우 유사한 개체들 간의 유전연산은 알고리즘의 탐색성능을 저하시키고 조기 수렴의 가능성을 증가시킨다. 본 논문에서는 이러한 현상을 극복하기 위하여, 교차연산 시 선택된 두 부모 개체간의 해밍 거리에 따라 그 값이 낮으면 교차연산 후 생성된 두 자식 개체 중 한쪽에게 높은 변이확률을 적용하고 다른 한쪽 자식은 부모와 비슷한 유전자 형으로 탐색을 계속하게 하여 조기 수렴을 방지하면서 해집단의 다양성 유지 기능을 향상 시켰다. 제안한 유전 알고리즘을 다차원 배낭 문제에 적용한 결과, 같은 조건에서 단순 유전 알고리즘(SGA) 보다 향상된 탐색 성능을 보여주었다.
유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.
유전 알고리즘은 확률에 기반한 매우 효과적인 최적화 기법이지만 지역해로의 조기수렴과 전역해로의 수렴 속도가 느리다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 적응 분할법에 기반한 유전 알고리즘을 제안하였다. 유전 알고리즘이 전역해를 효과적으로 찾도록 하는 적응 분할법은 최적화의 복잡도를 줄이기 위해 탐색공간을 적응적으로 분할한다. 이러한 적응 분할법은 탐색공간의 복잡도가 증가할수록 더 효과적이다. 제안된 방법을 테스트 함수의 최적화 및 도립진자 제어를 위한 퍼지 제어기 설계 최적화에 적용하여 그 유효성을 보였다.
다층퍼셉트론의 계층별 학습 방법의 하나인 Ergezinger 방법은 출력 노드가 1개로 구성되어 있고, 출력층의 가중치를 최소자승법으로 학습하기 때문에 출력층의 가중치에 조기포화 현상이 발생할 수 있다. 이런 조기 포화현상은 학습 시간과 수렴 속도에 장애가 된다. 따라서, 본 논문은 Ergezinger의 학습 방법을 출력층에서 벡터 형태로 학습할 수 있는 알고리즘으로 확대하고 학습 시간과수렴 속도를 개선하기 위해서 학습 상수를 도입한다. 학습상수는 은닉층 가중치 조정 시, 새로이 계산된 가중치와 기존 가중치의 상관 관계를 계산하여 학습 상수에 반영하는 가변적인 방법이다. 실험은 제안된 방법과 기존 방법의 비교를 위해서 iris 문제와 비선형 근사화 문제를 대상으로 실험하였다. 실험에서, 제안 방법은 기존 Ergezinger 방법보다 학습 시간과 수렴 속도에서 우수한 결과를 얻었으며, 상관 관계를 고려한 CPU time 측정에서도 제안한 방법이 기존 방법보다 약 35%의 시간을 절약할 수 있었다.
유전자 알고리즘은 탐색과 최적화 문제에 대한 효과적인 방법으로 이용되고 있으나 다수의 정점이 있는 다중정점 함수에 대한 응용에 있어서는 지역해에 조기 수렴하여 고착되는 등 전역 최적해를 찾는데 어려움이 있다. 이러한 문제는 탐색공간을 충분히 탐색할 수 있는 모집단의 다양성이 부족한 데 기인하는 것이며 해결방법으로 니칭 방법과 크라우딩 방법 등이 소개되고 있다. 개체군의 다양성을 증가시키는 방법으로 지역해에 고착되지 않고 전역 최적해로 수렴되도록 하는 데 기본을 두고 있다. 본 논문에서는 다중정점 함수의 전역 최적해에 수렴하고 수렴속도를 높이는 방법으로 진화과정의 매 세대마다 탐색영역에 충분히 분포되도록 임의로 생성된 보조 모집단을 공급함으로서 안정적으로 전역 최적해로 수렴하는 방법을 제안하였다. 컴퓨터 모의실험을 통하여 본 논문에서 제안한 방법을 입증하였다.
유전자 알고리즘은 효과적으로 최적의 해를 구하는 기법이나 진화연상산자의 선정에 따라 조기에 국부 최적해에 고착되어 전역 최적해로의 탐색을 어렵게 하는 문제점을 가지고 있다. 본 논문에서는 국부 최적해로 수렴하게 되는 원인을 분석하고, 국부 최적해에서 벗어나 전역 최적해로의 천이가 가능하도록 하는 방법을 제안하였다. 본 논문에서 사용한 방법은 평균 해밍거리에 따라 진화연산자를 가변시키는 방법으로서 국부 최적해에 고착되지 않도록 유전자에 다양성을 부여하여 지속적으로 모집단의 진화 특성을 유지하는 방법이다. 제안된 방법은 시뮬레이션을 통하여 효용성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.