A Study on Adaptive Partitioning-based Genetic Algorithms and Its Applications

적응 분할법에 기반한 유전 알고리즘 및 그 응용에 관한 연구

  • 한창욱 (동의대학교 전기공학과)
  • Received : 2012.07.02
  • Accepted : 2012.11.03
  • Published : 2012.10.30

Abstract

Genetic algorithms(GA) are well known and very popular stochastic optimization algorithm. Although, GA is very powerful method to find the global optimum, it has some drawbacks, for example, premature convergence to local optima, slow convergence speed to global optimum. To enhance the performance of GA, this paper proposes an adaptive partitioning-based genetic algorithm. The partitioning method, which enables GA to find a solution very effectively, adaptively divides the search space into promising sub-spaces to reduce the complexity of optimization. This partitioning method is more effective as the complexity of the search space is increasing. The validity of the proposed method is confirmed by applying it to several bench mark test function examples and the optimization of fuzzy controller for the control of an inverted pendulum.

유전 알고리즘은 확률에 기반한 매우 효과적인 최적화 기법이지만 지역해로의 조기수렴과 전역해로의 수렴 속도가 느리다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위해 적응 분할법에 기반한 유전 알고리즘을 제안하였다. 유전 알고리즘이 전역해를 효과적으로 찾도록 하는 적응 분할법은 최적화의 복잡도를 줄이기 위해 탐색공간을 적응적으로 분할한다. 이러한 적응 분할법은 탐색공간의 복잡도가 증가할수록 더 효과적이다. 제안된 방법을 테스트 함수의 최적화 및 도립진자 제어를 위한 퍼지 제어기 설계 최적화에 적용하여 그 유효성을 보였다.

Keywords

References

  1. Holland, J. H., Adaptation in Natural and Artificial Systems, Ann Arbor, MI, University of Michigan, 1975.
  2. GoIdberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
  3. Chung, S. H., Chan, H. K., "A Two-Level Genetic Algorithm to Determine Production Frequencies for Economic Lot Scheduling Problem", IEEE Trans. lndustrial Electronics, Vol. 59, No. 1, pp. 611-619, Jan. 2012. https://doi.org/10.1109/TIE.2011.2130498
  4. Li, B., Jiang, W., "A Novel Stochastic Optimization Algorithm," IEEE Trans. Systems, Man, and Cybernetics-Part B, Vol. 30, No. 1, pp. 193-198, Feb. 2000. https://doi.org/10.1109/3477.826960
  5. Sabatini, A. M., "A Hybrid Genetic Algorithm for Estimating the Optimal Time Scale of Linear Systems Approximations using Laguerre Models", IEEE Trans. Automatic Control, VoI. 45, No. 5, pp. 1007-1011, May 2000. https://doi.org/10.1109/9.855574
  6. Alpaydin, G., Dundar, G., Balkir, S., "Evolution-based Design of Neural Fuzzy Networks using Self-adapting Genetic Parameters", IEEE Trans. Fuzzy Systems, Vol. 10, No. 2, pp. 211-221. Apr. 2002. https://doi.org/10.1109/91.995122
  7. Tang, Z. B., "Partitioned Random Search to Optimization", Proc. of the American Control Conference, San Francisco, 1993.
  8. De Jong, K, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. dissertation, Dept. Computer Sci., Univ. Michigan, Ann Arbor, MI, 1975.
  9. Mamdani, E. H., Assilian, S., "An experiment in linguistic synthesis with a fuzzy logic controller", International Journal of Man-Machine Studies, Vol. 7, No 1, pp. 1-13, Jan. 1975. https://doi.org/10.1016/S0020-7373(75)80002-2
  10. Han, C. W., Park, J. I., "Design of a Fuzzy ControIler using Random Signal- based Learning Employing Simulated Annealing", Proc. of the IEEE Conference on Decision and Control, Sydney, Australia, pp. 396-397, 2000.