Improvement of Convergence Properties for Genetic Algorithms

유전자 알고리즘에 대한 수렴특성의 개선

  • Lee, Hong-Kyu (School of Information Technology, Korea University of Technology and Education)
  • Received : 2008.09.22
  • Accepted : 2008.10.30
  • Published : 2008.10.31

Abstract

Genetic algorithms are efficient techniques for searching optimum solution but have the premature convergence problem getting stuck in the local optimum according to the evolutionary operator. In this paper we analyzed the reason for converging to the local optimum and proposed the method which able transit to the global optimum from the local optimum. In these methods we used the variable evolutionary operator with the average hamming distance, to maintain the genetic diversity of the population for getting out of the local optimum. The theoretical results are proved by the simulation experiments.

유전자 알고리즘은 효과적으로 최적의 해를 구하는 기법이나 진화연상산자의 선정에 따라 조기에 국부 최적해에 고착되어 전역 최적해로의 탐색을 어렵게 하는 문제점을 가지고 있다. 본 논문에서는 국부 최적해로 수렴하게 되는 원인을 분석하고, 국부 최적해에서 벗어나 전역 최적해로의 천이가 가능하도록 하는 방법을 제안하였다. 본 논문에서 사용한 방법은 평균 해밍거리에 따라 진화연산자를 가변시키는 방법으로서 국부 최적해에 고착되지 않도록 유전자에 다양성을 부여하여 지속적으로 모집단의 진화 특성을 유지하는 방법이다. 제안된 방법은 시뮬레이션을 통하여 효용성을 입증하였다.

Keywords