• Title/Summary/Keyword: 제트 환기시스템

Search Result 18, Processing Time 0.022 seconds

A numerical study on the ventilation characteristics of rainfall in road tunnel (강우변화를 고려한 도로터널의 환기특성에 관한 수치해석)

  • Lee, Ho-Hyung;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2015
  • When rainfall occurred on road tunnel, that is likely to have influence upon ventilation force in the tunnels but the tunnels ventilation system did not consider factors of rainfall. Thus, this study investigated effects of rainfall upon ventilation force in the tunnels at no rainfall and changing of rainfall by 3 dimensional numerical method. Flow rate into road tunnels decreased as many as 52.34% at rainfall of 150 mm/hr, and pressure drop of road tunnel between entrance and exit decreased as many as 22.22%, so that rainfall had influence upon ventilation force in the tunnel. The number of necessary jet fan in road tunnels is 12 at no rainfall but, when rainfall of 80 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 16, when rainfall of 150 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 17. So, factor of rainfall should be considered at estimation of ventilation system of road tunnel.

A study on the ventilation control method of road tunnel for small vehicles (소형차 전용 도로터널의 환기기 제어방안에 대한 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young;Chang, Ji-Don
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.749-762
    • /
    • 2019
  • In recent years, in urban areas, underground of roads are being promoted in order to resolve traffic congestion and to secure green spaces, and due to the low ratio of large vehicles, they are planned or constructed as road tunnels for small cars only. In addition, the tunnels being built in the city is a tendency to be enlarged to play the role of main roads. Accordingly, the capacity of the ventilation system is increasing and various ventilation methods are required, and the importance of maintenance after the completion of the tunnel such as the operating cost of the ventilation system is emphasized. Therefore, the need for optimization of the operation stage for reducing the power consumption of the ventilation system and the study of the ventilation system operation control logic is increasing. In this study, the study on the necessity of the optimization of operation stage and control logic of the ventilation system was carried out to realize the energy-saving operation for the small car only passing through tunnels which is applied of ① jet fan and combination ventilation system (② jet fan + air purifying equipment, ③ jet fan + vertical shaft, ④ jet fan + supply air semi-transverse). As a result of this study, there can be various operating combinations in the case of the combined ventilation system, and even though the amount of ventilation air is the same, the operating power varies greatly according to the operating combinations. It was found that operating the axial fan first rather than the jet fan first operation method has an effect on power saving.

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel (도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.305-315
    • /
    • 2018
  • In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

A Numerical Analysis on the Effect of Parameters for the Flow Rate through the Tunnel with Jet Fan Ventilating System (제트 홴 방식 환기시스템을 사용하는 터널의 환기량에 영향을 주는 인자에 대한 수치해석 검토)

  • 김사량;김기정;허남건;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.567-574
    • /
    • 2002
  • In the present study, ventilation flow rates and pressure rises through a road tunnel are simulated numerically using CFD with the various conditions such as roughness height, swirl angle of jet fan, entrance and exit effect and hub to tip ratio. By using a modified wall function, friction factor can be predicted under 10% of error with respect to the Moody chart for the circular pipe flow and 15%, for the present tunnel. For more precise design, the effects of the swirl angle and hub to tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan are necessary to be considered.

Environmental Improvement in a Welding Factory by the Jet Ventilation System (제트 환기 시스템 도입에 의한 플랜트 기자재 용접장의 환경 개선 효과 분석)

  • Lim, Jung-Ho;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.66-72
    • /
    • 2008
  • In this inquiry, I would suggest jet ventilation system for effective elimination of welding flaw at machinery material welding shop on plant and evaluate the airstream on inner space and property of welding flaw's density through the examination. We can know outer atmosphere inflows at the speed of about 0.05m/s from western entrance in case of stopping the jet ventilation system, but airstream is accumulated on entire space. At height of worker's breathing surface(Ground Level = 1.5 m, below of GL) and welding work center, density of welding flaw on upper part(GL = 12m) is appeared 4 times higher than outer atmosphere at surplus range besides nearby of western entrance. At operation of jet ventilation system, since the smooth air current transfer at inner space and exhaust effect the wind speed is maintained at 0.932 m/s at the point of height of worker's breathing surface on inner space and it's concluded about the working conditions have been better than before operation of jet ventilation system because of that results show that inner space density of welding flaw at height of worker's breathing surface is 40.5%, and in the work shop, it is 20.3% at upper part.

  • PDF

A Fundamental Study on the Natural Ventilation in Local Vehicle Tunnels (국내 도로터널내 자연환기력 기초 연구)

  • 이창우;김효규;강재근;윤철욱
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.55-58
    • /
    • 1999
  • 현재 정부는 사회간접자본 확충을 통한 물류비용의 절감이라는 궁극적 목표를 위하여 도로터널의 확충 노력을 적극 경주하고 있으며 터널의 규모 또한 급격히 장대화 하고 있다. 또한 환경 및 안전 측면에서의 규제 강화로 인하여 터널환기 시스템이 점점 복잡해져 가고 있는 추세이다. 환기관련 주요 설비는 제트팬, 축류팬, 집진기, 수갱 등으로 대형화 및 자동화에 따라 운영비용 역시 급격히 증가하고 있으며 운영비용 중의 대부분은 현재 일반전기로 분류되어 있는 환기설비에 소요되는 전력비로, 장대터널의 경우 km 당 1 MW를 훨씬 초과하는 경우도 많아 SOC(사회간접자본)사업으로 추진되는 도로터널의 건설 및 운영상의 문제점으로 지적되고 있다. (중략)

  • PDF

Flow and Heat Transfer with Mesh in Direct Contact Liquid-Liquid Heat Exchanger for Solar Thermal System (태양열원을 위한 직접접촉식 액-액 열고환기에서 메쉬설치에 따른 유동 및 열전달)

  • 윤석만;김정보
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2000
  • 태양열 시스템에 사용되는 간접접촉을 열교환기는 열전달률감소, 부식, 스케일링 등의 문제에 기인하는 단점을 갖고 있다. 이러한 문제들을 해결하기 위하여 직접접촉 열교환기의 사용이 제안된다. 본 연구에서는 직접접촉 열교환기로서 분사칼럼이 도입되었다. 열전달률을 증가기키기위하여 작동유체는 연속유체와의 접촉면적을 증가시키기위하여 칼럼내에서 작고 균일한 방울들로 분산된다. 또한 작고 균일한 방울들로 만들기 위하여 열교환기 칼럼내에서 메쉬가 설치되었다. 디에틸 프탈레이트(Diethyl Pthalate , 밀도 : 1,052g/㎤)가 작동유체로 사용되었고, 메쉬가 있는 경우와 없는 경우로 비교 실험되었다. 실험중 칼럼의 길이방향으로 온도측정을 하였고, 두 유체간의 직접접촉 열교환 메카니즘을 알기 위하여 방울의 사진을 통하여 분석하였다. 방울이 제트형태로 형성될 때 방울은 작고 균일하였다. 한편 방울형태로 형성될 때는 크고 불균일하게 관찰되었으나 , 메쉬를 통해 칼럼내에서 효과적으로 작고 균일한 방울들로 되었다.

  • PDF

A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL (도로터널 환기/제연 시스템 시뮬레이션)

  • Park, Jong-Tack;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Cheol-Hyun
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.20-25
    • /
    • 2006
  • In the present study, flow characteristics inside a road tunnel are simulated for the ventilation flows due to jet fan system and flows induces by the traffic. Traffic ventilation is numerically simulated by multiple reference frame. From the results of steady state simulation of tunnel ventilation, it is found that the proper ventilation is achieved by the designed jet fan system along with ventilating flow induced by the traffic. A transient simulation is also performed for the case of vehicle fire in the tunnel reversing the direction of rotation of some fans. The results suggest that the heat and smoke can be controlled by the proper changing of fan operation mode. The present results can be used to design proper ventilation system and effective smoke control system as well.

A study on applications of the natural ventilation pressure(NVP) in local tunnels (터널내 자연환기력(NVP) 적용방안 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.269-285
    • /
    • 2014
  • In spite of the importance of the natural ventilation pressure(NVP) in tunnels for the optimal design of the ventilation system, there have been only few studies on the NVP because its measurement and quantitative analysis are not straightforward. This study aims at quantifying the amount of the NVP with the terrain and meteorological data for the local major tunnels. And ultimately this will lead to developing the guidelines for quantifying and applying NVP for the optimal design of tunnel ventilation system. 22 local tunnels in the major routes are studied for the NVP quantification. NVP derived from the meteorological data is in the range of 20~140 Pa, while NVP estimated from the terrain data ranges from 20 to 200 Pa. Since the jet fan pressure is about 10~15 Pa per unit, the minimum level of NVP expected in the local tunnels is larger than the pressure rise by one unit of the ordinary jet fan. This implies that NVP in local tunnels should be quantified and be taken into consideration for the economic and safe ventilation design. The barometric pressure difference between tunnel portals is found to be the most influential factor, accounting for 61% of the NVP, while the wind pressure acting on the portals and the chimney effects occupy 22% and 17%, respectively.

A Study on Jet Fan Start Time in Medium-Length Tunnel Fires (중규모터널 방재용 제트팬 초기 가동시간에 관한 연구)

  • Kim, Doo-Young;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.465-474
    • /
    • 2010
  • Although the number of medium-length road tunnels, less than 1 km in length, has increased recently more than 30 percent each year, their ventilation and fire safety system design guidelines have not been established yet. The guidelines for long tunnel design are adopted even for the medium-length road tunnels. Therefore the necessity is brought up to optimize the ventilation and fire safety systems based on their own design guidelines. This study aims at determining the optimal start time of jet fan in case of 20 MW fires by analyzing smoke backlayering range, temperature distribution, range of poor visibility, evacuation time and critical velocity. The CFD study results are expected to contribute to propose the optimal fan operation mode.