• 제목/요약/키워드: 입력처리 지도

검색결과 1,640건 처리시간 0.032초

시간제약 조건하에서 순차 회로를 위한 CPLD 기술 매핑 알고리즘 개발 (Development of CPLD technology mapping algorithm for Sequential Circuit under Time Constraint)

  • 윤충모;김희석
    • 한국정보처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.224-234
    • /
    • 2000
  • 본 논문에서는 시간제약 조건하에서 순차회로를 위한 새로운 CPLD 기술매핑 알고리즘을 제안한다. 본 기술매핑 알고리즘은 주어진 순차회로의 궤환을 검출한 후 궤환이 있는 변수를 임시 입력 변수로 분리한 후 조합논리 부분을 DAG로 표현한다. DAG의 각 노드를 검색한 후, 출력 에지의 수가 2이상인 노드를 분할하지 않고 노드만을 복제(replication)하여 팬 앙웃 프리 트리로 재구성한다. 이러한 구성 방법은 주어진 시간 조건 안에서 기존의 CPLD 기술 매핑 알고리즘으로 제안된 TEMPLA보다 적은 면적으로 회로를 구현하고, TMCPLD의 단점인 전체 수행 시간을 개선하기 위한 것이다. 시간제약 조건과 소자의 지연시간을 이용하여 그래프 분할이 가능한 다단의 수를 정하고, 각 노드의 OR 텀수를 비용으로 하는 초기비용과 노드 병합 후 생성될 OR 텀수인 전체비용을 게산하여 CPLD를 구성하고 있는 CLV의 OR텀수보다 비용이 초과되는 노드를 분할하여 서브그래프를 구성한다. 분할된 서브그래프들은 collapsing을 통해 노드들를 병합하고, 주어진 소자의 CLB안에 있는 OR텀 개수에 맞게 Bin packing를 수행하였다. 본 논문에서 제안한 기술매핑 알고리즘을 MCNC 논리합성 벤치마크 회로들에 적용하여 실험한 결과 기존의 CPLD 기술 매핑 툴인 TEMPLA에 비해 CLB의 수가 15.58% 감소되었고, TMCPLD에 비해 수행 시간이 감소되었다.

  • PDF

시맨틱웹을 활용한 초등학교 학습자료 검색시스템 (An Elementary Educational Contents Retrieval System Using Semantic Web)

  • 이희경;전우천
    • 정보처리학회논문지A
    • /
    • 제13A권6호
    • /
    • pp.545-554
    • /
    • 2006
  • 웹의 활용이 보편화 되면서 웹을 통한 자료의 검색이 증가하고 있으나, 웹상의 방대한 자료 중에서 학습자가 꼭 필요한 학습자료를 찾는 것은 쉬운 일이 아니다. 검색엔진을 이용할 경우 원하는 정보를 어느 정도 찾을 수 있으나 검색어 일치방식에 의존하는 현재의 검색엔진의 특성상 결과가 만족스럽지 못한 경우가 많다. 또한 검색 결과 중에서 연관이 없는 정보를 필터링하기 위해 사용자가 많은 시간을 낭비하기도 한다. 본 연구에서는 웹 자원의 의미정보를 구조화하여 정보의 효율적인 검색, 통합, 재사용을 가능하도록 하는 시맨틱 웹(Semantic Web)기술을 활용하여 초등학교 학습자료에 적합한 온톨로지(Ontology)를 제안하고, 의미적 연관관계를 통해 학습내용에 접근할 수 있도록 초등학교의 역사분야 학습 내용에 관한 온톨로지를 구축하였다. 또한 이를 기반으로 학습자료를 검색할 수 있는 시스템을 설계하고 구현하였다. 본 검색시스템의 특징은 다음과 같다. 첫째, 학습자료와 연관된 사용자 질의어를 보다 상세하게 입력받아 검색결과를 얻는다. 둘째, 사용자 질의어를 바탕으로 학습자료 온톨로지에 질의하여 검색어가 포함된 결과 및 검색어와 연관된 정보를 검색결과로 얻는다. 셋째, 질의어와 연관된 내용을 함께 제시함으로써 학습의 효율을 높일 수 있다.

의료 정보 추출을 위한 TF-IDF 기반의 연관규칙 분석 시스템 (TF-IDF Based Association Rule Analysis System for Medical Data)

  • 박호식;이민수;황성진;오상윤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권3호
    • /
    • pp.145-154
    • /
    • 2016
  • u-Health에 대한 관심과 IT 기술의 발전에 따라 의료 정보를 적극적으로 활용하고자 하는 요구가 커지고 있으며, 이에 대해 텍스트 형태의 의료 정보 데이터에 연관규칙 기법을 적용하여 질병과 증상과의 관계를 추론하는 시스템에 대한 연구들이 이루어지고 있다. 그러나 일반적인 연관규칙 기법을 의료 정보 데이터에 그대로 적용할 경우, 이전에는 새로운 연관규칙들보다 일반적이며 의미없는 연관규칙들이 많이 생성되는 문제가 발생한다. 또한 필터링으로 인해 빈번하게 함께 발생하지는 않지만 의학적으로 의미있는 항목들의 연관 규칙을 발견할 수 없다는 한계점을 가지게 된다. 본 논문에서는 의료데이터 특성을 고려하여 빈번한 항목과 빈번하지 않지만 의학적으로 의미 있는 항목들을 대상으로 연관규칙을 구성하여 의료 전문가의 의사 결정에 도움을 주기 위한 시스템을 제안한다. 제안 시스템은 의료 기록 데이터에서 용어들을 TF-IDF기반으로 가중치를 부여하고 기존 FP-Growth 알고리즘을 확장하여 TF-IDF 가중치를 고려한 빈번하게 발생하거나 빈번하지 않지만 의미 있는 연관규칙을 구성한다. 특정 질의 데이터가 입력되면 해당 데이터에 나타난 연관 규칙들의 유사도를 의학분야 온톨로지를 이용하여 평가하여 해당 데이터의 내용과 관련된 후보 질병들을 추론한다. 추론된 후보 질병명은 의료 전문가에게 의사 결정의 참고 자료로 제공된다. 실제 임상 진료 및 처방 기록 데이터에 대해 제안 시스템을 적용해 본 결과, 본 제안 시스템을 통해 도출한 연관 규칙이 기존 FP-Growth 알고리즘을 적용했을 때 보다 더 구체적인 질병과 증상과의 관계들을 포함함을 확인할 수 있었다. 또한 본 제안 시스템은 자유형식의 의료 및 병리데이터를 마이닝하고 후보 질병들을 가중치 기반으로 보여주므로, 의료 기록 정보로부터 질병 관련 새로운 정보를 획득하고 의료진의 의사 결정에 도움을 주는 시스템으로 활용될 수 있다.

차량 네트워크에서 고속 영상처리 기반 스마트 카메라 기술 (Smart Camera Technology to Support High Speed Video Processing in Vehicular Network)

  • 손상현;김태욱;전용수;백윤주
    • 한국통신학회논문지
    • /
    • 제40권1호
    • /
    • pp.152-164
    • /
    • 2015
  • 최근 반도체 기술, 센서 기술 및 이동통신 기술의 발전으로 스마트 자동차 기술 연구 개발이 진행 중에 있다. 사회가 발전함에 따라 차량이 증가하였고 사고에 대한 위험은 점차 높아지고 있다. 그에 따라 기존의 차량용 블랙박스 외에 차량의 각종 센서 정보를 활용하여 운전자에게 다양한 정보를 제공하는 첨단 운전자 보조 시스템이 연구되고 있다. 본 논문에서는 차량 간의 통신기능을 포함하고, 주변의 정보를 습득하여 제공할 수 있는 스마트 카메라 장치를 설계 및 구현하여, 장치에 포함된 카메라로부터 입력 받은 영상을 분석하여 획득한 정보를 영상 메타데이터화 하는 기술에 대한 연구를 수행하였다. 또한 임베디드 장치의 제한된 계산 성능을 보완하기 위해 관심영역을 설정하는 S-ROI(Static-Region Of Interest), D-ROI(Dynamic-Region Of Interest) 방식을 고안하였다. 실험을 통해 영상처리 속도가 전체영상 분석에 비해 S-ROI의 경우 3.0배, D-ROI의 경우 4.8배 향상함을 확인하였다.

실수형 2차원 데이터를 위한 고속 미디언 필터링 알고리즘 (Fast Median Filtering Algorithms for Real-Valued 2-dimensional Data)

  • 조태훈
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2715-2720
    • /
    • 2014
  • 미디언 필터링은 임펄스 형태의 잡음의 제거에 매우 효과적이어서, 많은 신호처리 응용분야에서 널리 사용되어왔다. 하지만, 비선형성에 의한 시간 복잡도로 인하여, 미디언 필터링은 주로 작은 필터윈도우 크기를 사용하였다. 고속 미디언 필터링 알고리즘에 대한 많은 연구가 진행되었지만 대부분 영상과 같은 한정된 정수값을 갖는 입력데이타에만 적용될 수 있으며, 실수형 2차원 데이터의 고속 미디언 필터링 알고리즘에 대한 연구는 미미한 실정이다. 본 논문에서는 간단하면서도 실수형 2차원 데이터를 고속으로 미디언 필터링할 수 있는 알고리즘을 제안하고 Matlab의 2차원 미디언 필터와 힙(heap)기반의 2차원 미디언 필터와 성능을 비교하였다. 다양한 필터윈도우 크기에 대해서 제안된 알고리즘이 Matlab의 필터보다는 훨씬 빠르고, 힙기반의 필터보다는 대부분 일관되게 더 빠른 결과를 내었다. 또한, 한정된 데이터 값 범위를 갖는 실수형 2차원 데이터는 비트수가 큰 정수형 고속 2차원 미디언 필터링 알고리즘을 이용하여 거의 오차없이 매우 빠르게 미디언 필터링을 할 수 있음을 보였다.

Radial Basis 함수를 이용한 동적 - 단기 전력수요예측 모형의 개발 (The Development of Dynamic Forecasting Model for Short Term Power Demand using Radial Basis Function Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제4권7호
    • /
    • pp.1749-1758
    • /
    • 1997
  • 전력수요의 예측은 예측기간에 따라 중장기 전력수요 예측과 단기 부하 예측으로 구분할 수 있다. 기존의 단기 부하예측은 주로 역전파 알고리즘(back propagation algorithm)다층퍼셉트론을 이용하여 예측을 하였으나 이는 학습시간이 많이 걸릴 뿐만 아니라 학습도중에 지역최소점(local minima)에 빠져 학습이 계속되지 못한다는 문제가 있다. 본 논문은 이러한 역전파 알고리즘의 문제점을 해결할 수 있는 방법으로 Radial Basis 함수(Radial Basis Function)를 이용하여 동적 단기부하 예측 모형을 제안한다. Radial Basis 함수는 하나의 은닉층(hidden layer)을 갖고 있으며, 전방향(feed-forward)학습을 한다는 특징이 있다. 본 논문에서 제안한 단기 부하 예측모형은 학습을 하기 위하여 시간대별 부하량을 클러스터링 하고, 이 클러스터의 중심값을 Radial Basis 함수의 은닉층으로 하여 학습을 한 다음 예측하고자 하는 패턴을 한 단위로 하여 시단대별로 예측하였다. 기존의 연구에서의 클러스터링 방법으로는 통계학의 K-Means 방법이나 Kohonen의 LVQ(Learning Vector Quantization)을 주로 이용하였으나 본 논문에서는 패턴의 분류에 있어서 다른 알고리즘보다 편차가 작은 Pal, et. al.의 GLVQ(Generalized LVQ) 알고리즘을 이용하였다. 본 논문에서 이용한 데이타는 1995년 3월 1일-3일, 6월 1일-3일, 7월 1일-3일, 9월 1일-3일, 11월 1일-3일의 72시간 데이타를 입력하여 월별 4일의 24시간의 예측시간으로 예측하였다. 실험결과 월별 1일과 3일까지의 학습데이타로 1시간 후의 부하량을 24시간동안 예측한 결과 1.3795%의 평균 오차율로 예측하였다.

  • PDF

퍼지-뉴럴 네트워크를 응용한 지능형 로드밸런싱 알고리즘 개발 (Development of Intelligent Load Balancing Algorithm in Application of Fuzzy-Neural Network)

  • 추교수;김완용;정재윤;김학배
    • 한국통신학회논문지
    • /
    • 제30권2B호
    • /
    • pp.36-43
    • /
    • 2005
  • 본 논문에서는 복잡하고 비선형적인 특성을 가진 웹 클러스터링 시스템의 모델링을 위해 퍼지-뉴럴 네트워크 구조를 응용하여 효율적인 최적의 부하분산 알고리즘 모델을 제안한다. 기본적으로 리눅스 환경의 웹 클러스터 시스템을 바탕으로 하였으며 이는 부하를 실제 서버(리얼서버)로 분배해주는 로드밸런서와 그 하단에 실제 부하를 처리하는 여러 대의 리얼서버로 구성된다. 기존의 부하분산 방법에서는 각각의 리얼서버들에 대한 접속수 등 단편적인 판단정보를 기준으로 부하분산을 결정하였다. 즉, 리얼서버의 네트워크 처리량 중 입력에 관련된 정보만으로 부하분산을 결정하였으므로 실제 시스템 성능 향상에 적당하지 않다. 이에 대한 대안으로 리얼서버의 시스템 상태 정보로 네트워크 부하량의 입 출력 두 가지 측면 모두를 기준으로 판단한다. 즉, 로드밸런서가 리얼서버에게 요청을 전달할 때의 리얼서버 상태(접속수) 및 그 요청에 대해 클라이언트에게 응답을 보낼 때의 리얼서버 상태 등을 종합적으로 고려한다. 또한 그에 따른 시스템의 CPU 상태로만 한정하여 부하분산을 결정하지 않고 각 리얼서버의 CPU 및 메모리 상태를 모두 고려하여 보다 효과적인 부하분산 스케줄링 방법을 제안한다. 본 연구에서 제안된 방법이 기존의 방법과 비교하여 좀 더 향상된 최적화 모델을 구축하며 보다 나은 지능형 로드밸런서 모델을 생성함을 시뮬레이션을 통하여 비교 분석하였다.

통계적 기계학습 기술을 이용한 시뮬레이션 결과 예측 시스템 개발 (Development of a Simulation Prediction System Using Statistical Machine Learning Techniques)

  • 이기용;신윤재;최연정;김선정;서영균;사정환;이종숙;조금원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.593-606
    • /
    • 2016
  • 컴퓨터 시뮬레이션은 전산유쳬역학, 나노 물리, 계산화학, 구조 동역학, 전산설계 등 여러 계산과학공학 분야에서 시스템의 움직임을 예측하기 위해 널리 사용되고 있다. 하지만 시뮬레이션의 정밀도와 복잡도가 점점 증가함에 따라 시뮬레이션을 수행하는 비용 역시 크게 증가하고 있다. 따라서 시뮬레이션의 수행비용을 줄이는 것은 특히 입력 변수들의 값을 변화시켜가며 시뮬레이션을 반복적으로 수행하는 경우, 시뮬레이션 수행 시간 단축을 위해 매우 중요하다. 본 논문은 어떤 시뮬레이션의 수행이 요청되었을 때, 해당 시뮬레이션을 실제로 수행하지 않고도 기존에 수행된 시뮬레이션의 결과를 저장하여 이전에 획득되거나 혹은 예측된 결과를 반환하는 시스템을 개발한다. 이를 위해 본 논문에서 개발된 시스템은 크게 다음 2가지 기능을 제공한다: (1) 수행이 완료된 시뮬레이션의 결과를 데이터베이스에 저장하는 기능, (2) 사용자가 요청한 시뮬레이션의 결과를 통계적 기계학습 기술을 사용하여 예측하는 기능. 본 논문에서 개발한 예측 시스템의 예측 성능을 실제 유체역학 시뮬레이션 데이터를 사용하여 평가한 결과, 출력변수에 따라 0.9%의 매우 낮은 평균 예측 오차율을 보였다. 본 논문에서 개발한 시스템을 통하여 사용자들은 계산 및 저장 자원에 큰 부하를 주는 시뮬레이션을 실제 수행하지 않고도, 수행을 원하는 시뮬레이션의 결과를 빠르게 예측해 볼 수 있다.

DCT 맵 FSVQ와 단방향 분포 허프만 트리를 이용한 영상 압축 (Image Compression Using DCT Map FSVQ and Single - side Distribution Huffman Tree)

  • 조성환
    • 한국정보처리학회논문지
    • /
    • 제4권10호
    • /
    • pp.2615-2628
    • /
    • 1997
  • 본 논문에서는 영상 전송을 위한 벡터 양자화기를 설계할 때 2차원 DCT에 근거한 DCT 맵과 유한상태 벡터 양자화를 이용하는 새로운 부호책(codebook) 설계 알고리듬을 제안한다. 영상을 윤곽선이 많은 부분과 적은 부분으로 나누어 맵을 만들고 이 맵에 따라 영상의 중요한 특징들을 2차원 DCT로 추출한다. 유한상태 벡터 양자화기의 마스터 부호책은 트리 구조에 근거한 2진 트리를 사용하여 두 영역을 따로 학습세트로 나눔으로서 만들어진다. 이와 같이 작성된 마스터 부호책으로부터 상태 부호책을 작성하여 입력 벡터에 대하여 마스터 부호책이 아닌 상태 부호책으로부터 부호단어를 찾는다. 또한 인덱스의 부호화는 고속 디지털 전송에 중요한 부분이기 때문에 고정길이의 부호를 엔트로피 부호화 법칙에 따라 가변 길이의 부호로 바꾸어 수행한다. 즉, 설계한 부호책에서 각 부호에 전송 부호 할당은 허프만 부호화를 수행하는데, 허프만 트리에서의 허프만 코드의 생성을 빠르게 하기 위해 본 논문에서는 트리의 단방향 분포 허프만 트리 알고리듬을 제안한다. Einstein과 Bridge 영상에 대하여 본 알고리듬으로 영상을 부호화했을 때 PNN 알고리듬보다는 각각 2.94 dB과 2.48 dB만큼, CVQ 알고리듬보다 각각 약 1.75 dB과 0.99dB만큼 더 좋은 영상의 화질을 얻을 수 있었다.

  • PDF

스트리밍 프레임워크에서 미디어 관리자의 설계 및 구현 (Design and Implementation of Media Manager in Multimedia Streaming Framework)

  • 이재욱;이승룡;홍인기
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권4호
    • /
    • pp.273-287
    • /
    • 2001
  • 본 논문에서는 멀티미디어 스트리밍 프레임워크에서 미디어 관리자의 설계와 구현에 대한 경험을 기술한다. 미디어 관리자는 스트리밍 프레임워크 내에서 미디어 스트림이 어떠한 타입의 소스로부터 얻어지며, 그것이 어떠한 종류의 스트림인가를 판별하고, 획득된 미디어를 가장 적절하게 처리할 수 있는 코덱을 선택하며, 어떠한 미디어 디바이스를 통해 재생되어야 효과적인지를 식별하고 관리하기 위해서 필요하다. 제안된 미디어 관리자는 크게 미디어 소스와 싱크 모듈로 구성되어 있는데, 미디어 소스 모듈은 미디어를 추상화시킴으로써 여러 소스로부터 입력되는 성격이 다른 미디어들을 어떤 소스에서 전달된 미디어인지 상관하지 않고 효과적이고 일관된 방법으로 처리할 수 있다. 미디어 싱크 모듈은 클라이언트 측에서 얻어온 미디어 데이타를 적절한 미디어 디바이스에 분배해주는 역할과 전달된 미디어를 다양한 미디어 표현장치를 통해 재생시키는 역할을 수행한다. 제안된 미디어 관리자는 멀티미디어 데이타베이스와 연동기능을 지원함으로써 높은 부가가치 서비스 제공을 가능케 하였고, RTP/RTSP 소스필터나 Winamp 게이트웨이 기능도 지원함으로써 융통성을 제공한다. 더욱이, 향후 새로운 형태의 미디어 소스가 출현하더라도 이를 용이하게 스트리밍 프레임워크에 추가시켜 서비스할 수 있는 유연성과 확장성을 지원한다.

  • PDF