The monthly series is an aggregation of daily values. In the absence of observable daily data, calendar effects such as trading day and holidays are estimated using a RegARIMA model. However, if the daily series were observable, these calendar effects could be estimated directly from the daily series, potentially improving the seasonal adjustment of the monthly time series. In this paper, we propose a method to improve the seasonal adjustment of monthly time series by using calendar variation estimation based on daily time series. We apply this seasonal adjustment method to three monthly time series and compare our results with those obtained using X-13ARIMA-SEATS.
ARIMA and ARIMA+IGARCH models are fitted and compared for daily Korean won/US dollar exchange rate data over 17 years. A linear structural change model and an autoregressive structural change model are fitted for multiple change-point estimation since there seems to be structural change with this data.
경제학에서 분석하는 연도별 국민총생산액, 월별 소비자물가지수, 경영학에서 분석하는 어느 제품의 월별 판매량, 특정주식의 일별 종가 및 거래량, 기상학에서 관찰되는 일별 최고온도 및 최저온도, 태풍의 경로, 등등 여러 학문분야에서 접할 수 있는 통계자료들은 시간이 흐름에 따라 변하는 시계열자료(time series data)들이 많다. 따라서 대부분의 학문분야에서 시계열 분석이 필요하다.(중략)
Journal of the Korean Data and Information Science Society
/
v.25
no.1
/
pp.155-167
/
2014
This study uses a continuous autoregressive (CAR) model to analyze daily average temperature in six Korean metropolitan cities. Data period is Jan. 1, 1954 to Dec. 31, 2010 covering 57 years. Using a relative long time series reveals that the linear time trend components are all statistically significant in the six cities, which was not shown in previous studies. Particularly the plus sign of its coefficient implies the effect on Korea of the global warming. Unit-root test results are that the temperature time series are stationary without unit-root. It turns out that CAR(3) is suitable for stochastic component of the daily temperature. Since developing suitable continuous stochastic model of the underlying weather related variables is crucial in pricing the weather derivatives, the results in this study will likely prove useful in further future studies on pricing weather derivatives.
이 논문에서는 주가가 확률과정, 즉 확률미분방정식에 의하여 생성되는가를 검정하고 주가의 운동법칙을 규명한다. 일별종합주가지수가 양수의 완전시계열상관을 갖고 있으며, 더욱이 3년 정도의 시차까지 의미있는 시계열상관을 갖고 있음이 발견되었다. 수익률과 가격변화의 시계열상관도 존재하고 시계열은 정상성(定常性)을 갖고 있다. 마팅게일에 의하여 주가가 생성되고있지 않음이 밝혀졌다. 한국증권거래소에서 계산하고 있는 일별 종합주가지수를 포함한 41개 산업별 지수를 사용하여 자본시장의 운동법칙을 규명하기 위하여 가장 많이 이용하고 있는 세개의 확률미분방정식을 검정하였다. 각 주가지수들이 온스타인 울렌벡 브라운 운동과정과 평균회귀과정을 따르지 않고 있다는 것이 발견되었다. 그러나 주가가 편류를 갖는 일반 기하 브라운 운동과정에 의하여 생성되고 있음이 검정을 통하여 확인되었다. 평균회귀과정에 의하여 주가가 생성되지 않는다는 발견은 의외라 할 수 있다. 주가가 온스타인 울렌벡 과정을 따르지 않는다는 것은 주가가 제 1계 정상적 자기회귀과정이 아니라는 것을 의미한다. 일별종합주가지수는 제 4계 자기회귀과정에 의하여 생성된다. 가격변화와 수익률의 생성함수는 제 4계 자기회귀과정이다. 종합주가지수의 제 1계 시계열상관계수는 1이다. 상당히 큰 시차를 갖을 때까지 시계열상관이 대략적으로 1을 유지하고 있다. 따라서 지수가 마팅게일을 따르고 있지 않다. 이 점은 가격변화와 수익률에 있어서도 유사하다. 가격변화, 수익률, 대수수익률의 제 1계 시계열상관이 0.1로 유의적이다. 따라서 수익도 마팅게일 과정을 따르고 있지 않다. 증권가격은 세 번에 걸쳐 구조의 번화가 발생하였다. 구조의 변화가 발생할 때마다 평균가격이 상승하였다. 이와 같은 현상은 장기적 기대가격이 미지일 가능성이 배제되지 않는다. 단기적 기대 주가가 알려진 반면 장기적 기대 주가가 미지라면 평균회귀과정은 장기적 기대주가로 회귀하고 있는 과정이므로 장기기대 주가의 미지성이 평균회귀 과정의 기각을 유도하게 된다. 우리나라의 투자자들은 무위험자산과 위험을 동시에 고려하여 투자활동을 전개하고 있음이 발견되었다. 선형의 효용함수를 갖는 위험중립적 태도의 투자자가 아니다. 위험기피형 효용함수 아래에서 투자활동을 수행하고 있는 합리적 투자자들이라 할 수 있다. 뿐 만 아니라 자신의 평생에 걸친 소비를 소비가 이루어지는 각 기마다 가급적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.
Forecasting the daily peak load for electricity demand is an important issue for future power plants and power management. We first introduce several time series models to predict the peak load for electricity demand and then compare the performance of models under the RMSE(root mean squared error) and MAPE(mean absolute percentage error) criteria.
한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.
쇄신의 분산이 무한인 주가시계열이 장기의존성 과정에 의하여 생성되고 있는가 또는 생성되고 있지 않는가를 검정하고자 한다. 기존의 연구가 쇄신의 분산이 유한한 경우에 한정하여 장기의존성 주가 과정에 대한 장기기억성이 검토되어왔다. 이 논문에서는 쇄신의 분산이 유한한 경우와 무한한 경우에 다같이 적용되는 방법들을 한국종합주가지수의 일별수익률에 적용하여 장기기억 모수를 추정 검정한다. 추정방법으로서는 분수 가우스 잡음, 가우스 분수적분 자기회기 이동평균, 선형 분수안정잡음 등이 형성되는 상황에 절대값 방법, 분수 방법과 총량화 Whittle 방법을 사용한다. 한국종합주가지수의 일별대수수익률 시계열은 분산이 무한한 경우에도 장기의존성과정에 의하여 생성되고 있다. 극치가 존재해도 장기기억과정이 형성 되고 있다.
고빈도의 주가 데이터 시계열의 확률적 진폭성을 다 시간 축척 가중치를 사용하여 정립된 비모수적 추정방법으로 이 논문에서는 추정하였다. 이 방법을 한국종합 주가지수에 적용하였다. 확률과정에 의한 주가 움직임은 표류 항보다 확산 항이 고빈도 시계열에 있어서는 중요시된다. 데이터의 이산시간 간격이 매우 짧으면 표류 항은 그 값이 매우 작아 거의 0에 가깝다. 이 경우에는 주가 행동이 확산 항에 의하여 결정된다. 주가 확률과정의 확산 항은 결정짓는 인자는 주가의 확률적 진폭성이다. 따라서 주가의 운동을 정확히 파악하기 위해서는 확률적 진폭성의 추정이 관건이 된다. 일별 한국종합주가지수를 사용하여 연별로 추정한 확률적 진폭성은 상당이 크다. 연도의 관점에서 볼 때 주가는 일별로 상당히 변동하고 있다는 것을 이 결과는 함의하고 있다. 주가가 상승하고 있는 기간에는 그렇지 않은 기간에 비해 진폭성이 증가하고 있다. IMF 이전과 이후는 확률적 진폭성의 질이 다르다. IMF 이후에 확률적 진폭성의 측면에서 구조변화가 발생하였다. 변화된 특성은 진폭성이 매우 크다는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.