References
- Alaton, P., Djehiche, B. and Stillberger, D. (2002). On modelling and pricing weather derivatives. Applied Mathematical Finance, 9, 1-20. https://doi.org/10.1080/13504860210132897
- Bae, G. and Jeong, J. (2009). Model of pricing weather derivatives. Korean Journal of Futures and Options, 17, 49-66.
- Benth, F. S. and Saltyte-Benth, J. (2005a). Stochastic modelling of temperature variations with a view towards weather derivatives. Applied Mathematical Finance, 12, 53-85. https://doi.org/10.1080/1350486042000271638
- Benth, F. E. (2007). Putting a price on temperature derivatives. Scandinavian Journal of Statistics, 34, 746-767.
- Benth, F. E., Saltyte-Benth, J. and Janlinskas, P. (2007). A spiral temporal model for temperature with seasonal variance. Journal of Applied Statistics, 34, 823-841. https://doi.org/10.1080/02664760701511398
- Caballero, R., Jewson, S. and A. Brix, A. (2002). Long memory in surface air temperature detection, modeling and application to weather derivative valuation. Climate Research, 21, 127-140. https://doi.org/10.3354/cr021127
- Campbell, S. and Diebold, F. (2002). Weather forecasting for weather derivatives, Working paper, Rodney White Center for Financial Research, University of Pennsylvania, U.S.A.
- Campbell, S. and Diebold, F. (2005). Weather forecasting for weather derivatives. Journal of the American Statistical Association, 100, 6-16. https://doi.org/10.1198/016214504000001051
- Cao, M. and Wei, J. (2000). Equilibrium valuation of weather derivatives, Working paper, University of Toronto.
- Chan, K., Karolyi, G., Longstaff, F. and Sanders, B. (1992), An empirical comparison of alternative models of short-term interest rate. Journal of Finance, 47, 1209-1228 https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
- Choi, H. and Lim, D. (2013). Bankruptcy prediction using ensemble svm model. Jounal of the Korean Data & Information Science Society, 24, 113-1125. https://doi.org/10.7465/jkdi.2013.24.6.1113
- Dischel, B. (1998a). Black-Scholes won't do. Energy and Power Risk Management, 8-9.
- Dischel, B. (1998b). At last: A model for weather risk. Energy and Power Risk Management, 20-21.
- Dornier, F. and Queruel, M. (2000). Caution to the wind, weather risk special report. Energy and Power Risk Management Risk Magazine, 30-32.
- Gillespie, D. (1996). Exact numerical simulation of the Orstein-Uhlenbeck process and its integral. Physical Review, 54, 2084-2091.
- Hardle, W. and Osipenko, M. (2011). Spatial risk premium on weather derivatives and hedging weather exposure in electricity. The Energy Journal, 33, 149-170.
- Hardle, W. and Cabrera, B. L. (2012). Implied market price of weather risk. Applied Mathematical Finance, 19, 59-95. https://doi.org/10.1080/1350486X.2011.591170
- Hull, J. and White, A. (1990). Pricing interest-rate derivative securities. Review of Financial Studies, 3, 573-592. https://doi.org/10.1093/rfs/3.4.573
- Hull, J. and White, A. (1996). Using Hull-White interest rate trees. Journal of Derivatives, 3, 26-36. https://doi.org/10.3905/jod.1996.407949
- Ichihara, K. and Kunita, H. (1974). A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 30, 235-254. https://doi.org/10.1007/BF00533476
- Kim, M. and Kim, J. (2004). Study on pricing weather option. Korea Financial Engineering Society, 1-26.
- Kim, H. and Kim, T. (1992). Stochastic model of winter temperature in Seoul. The Korean Journal of Applied Statistics, 5, 59-80.
- Kim, H. and Lee, Y. (2013). A study on the density analysis of climatological stations using the correlation integral method in the fractal dimension. Jounal of the Korean Data & Information Science Society, 24, 53-62. https://doi.org/10.7465/jkdi.2013.24.1.53
- Lee, J. (2002). A Study on the v aluation of the CDD/HDD weather options. Korean Journal of Financial Studies, 31, 229-255.
- Phillips, A. W. (1959). The estimation of parameters in systems of stochastic differential equations. Biometrika, 46, 67-76. https://doi.org/10.1093/biomet/46.1-2.67
- Shim, J. and Lee, J. (2009). Kernel method for autoregressive data. Jounal of the Korean Data & Information Science Society, 20, 949-964.
- Shim, J. and Hwang, C. (2013). Expected shortfall estimation using kernel machines. Jounal of the Korean Data & Information Science Society, 24, 625-636. https://doi.org/10.7465/jkdi.2013.24.3.625
- Syroka, D. J. and Toumi, R. (2001). Scaling and persistence in observed and modelled surface temperature. Geophysical Research Letters, 28, 3255-3259. https://doi.org/10.1029/2000GL012273
Cited by
- A study on the slope sign test for explosive autoregressive models vol.26, pp.4, 2015, https://doi.org/10.7465/jkdi.2015.26.4.791
- A statistical prediction for concentrations of Manganese in the ambient air vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.577
- A study on the relationship between the onshore and offshore Chinese Yuan markets vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1387