• Title/Summary/Keyword: 인공지능-딥러닝

Search Result 699, Processing Time 0.028 seconds

Noise filtering method based on voice frequency correlation to increase STT efficiency (STT 효율 증대를 위한 음성 주파수 correlation 기반 노이즈 필터링 방안)

  • Lim, Jiwon;Hwang, Yonghae;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.176-179
    • /
    • 2021
  • 현재 음성인식 기술은 인공지능 비서, 전화자동응답, 네비게이션 등 다양한 분야에서 사용되고 있으며 인간의 음성을 디바이스에 전달하기 위해 음성 신호를 텍스트로 변환하는 Speech-To-Text (STT) 기술을 필요로 한다. 초기의 STT 기술의 대부분은 확률 통계 방식인 Hidden Markov Model (HMM)기반으로 이루졌으며, 딥러닝 기술의 발전으로 HMM과 함께 Recurrent Nural Network (RNN), Deep Nural Network (DNN) 기법을 사용함으로써 과거보다 단어 인식 오류를 개선하며 20%의 성능 향상을 이루어냈다. 그러나 다수의 화자 혹은 생활소음, 노래 등 소음이 있는 주변 환경의 간섭 신호 영향을 받으면 인식 정확도에 차이가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위하여 음성 신호를 추출하여 주파수성분을 분석하고 오디오 신호 사이의 주파수 영역 correlation 연산을 통해 음성 신호와 노이즈 신호를 구분하는 것으로 STT 인식률을 높이고, 목소리 신호를 더욱 효율적으로 STT 기술에 입력하기 위한 방안을 제안한다.

  • PDF

Implementation of Real Time Facial Expression and Speech Emotion Analyzer based on Haar Cascade and DNN (Haar Cascade와 DNN 기반의 실시간 얼굴 표정 및 음성 감정 분석기 구현)

  • Yu, Chan-Young;Seo, Duck-Kyu;Jung, Yuchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.33-36
    • /
    • 2021
  • 본 논문에서는 인간의 표정과 목소리를 기반으로 한 감정 분석기를 제안한다. 제안하는 분석기들은 수많은 인간의 표정 중 뚜렷한 특징을 가진 표정 7가지를 별도의 클래스로 구성하며, DNN 모델을 수정하여 사용하였다. 또한, 음성 데이터는 학습 데이터 증식을 위한 Data Augmentation을 하였으며, 학습 도중 과적합을 방지하기 위해 콜백 함수를 사용하여 가장 최적의 성능에 도달했을 때, Early-stop 되도록 설정했다. 제안하는 표정 감정 분석 모델의 학습 결과는 val loss값이 0.94, val accuracy 값은 0.66이고, 음성 감정 분석 모델의 학습 결과는 val loss 결과값이 0.89, val accuracy 값은 0.65로, OpenCV 라이브러리를 사용한 모델 테스트는 안정적인 결과를 도출하였다.

  • PDF

Deep Learning Based Autonomous-Driving Cart Using ROS for Computation Offloading (컴퓨팅 계산 오프로딩 위해 ROS를 사용한 딥러닝 기반의 자율주행카트)

  • Han, Jisu;Park, Ji-Yoon;Kim, Chae-won;Park, Sang-soo;Kim, Hieonn
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.100-103
    • /
    • 2021
  • IoT 와 인공지능을 접하려는 시도는 최근 들어서 많은 발전을 보이고 있다. 본 논문은 컴퓨팅 파워가 제한되는 작은 디바이스 IoT 의 한계를 극복하기 위하여 ROS 를 이용하여 복잡한 연산을 무선 통신으로 오프로딩하는 기법을 제안한다. 제안된 자율주행카드 시스템은 카트 이용 고객 개개인을 검출하고 추적하되 컴퓨터 비전 알고리즘과 LiDAR 센서를 이용하며, 음성인식 알고리즘을 적용하여 기계와 인간의 감성공학적 소통이 가능한 융합형 자율주행카트를 구현한다.

Performance Comparison of Deep Learning Model Loss Function for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 손실 함수의 성능 비교)

  • Song Yeon Lee;Yong Jeong Huh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.40-44
    • /
    • 2023
  • The defect detection based on deep learning requires minimal loss and high accuracy to pinpoint product defects. In this paper, we confirm the loss rate of deep learning training based on disc-shaped artificial scaffold images. It is intended to compare the performance of Cross-Entropy functions used in object detection algorithms. The model was constructed using normal, defective artificial scaffold images and category cross entropy and sparse category cross entropy. The data was repeatedly learned five times using each loss function. The average loss rate, average accuracy, final loss rate, and final accuracy according to the loss function were confirmed.

  • PDF

Mask detection in complex scenes using an ensemble of YOLO models (YOLO 모델 앙상블을 이용한 복잡한 장면에서의 Mask Detection 기법)

  • Hu, Xufeng;Lim, Hyunseok;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.97-98
    • /
    • 2022
  • 코로나바이러스-19 팬데믹 이후 매일 수만 명의 환자가 발생하고 있다. 보건당국은 사람들의 생활 안전을 보호하기 위해 공항, 정류장 등 공공장소에서는 반드시 마스크를 착용하라고 지시하고 있다. 마스크를 착용하는 목적은 감염으로부터 신체를 보호하고 바이러스 전파와 확산을 막기 위한 것이다. 공공장소에서는 많은 인원에 대한 일괄적인 마스크 착용 검사를 하기 어렵고, 육안으로 확인하는 마스크 착용 검사 방법은 인파가 몰리는 장소에서 검사 효율이 떨어지며 누락되는 경우도 많이 발생한다. 본 연구에서는 입력 이미지에 존재하는 얼굴 영역을 YOLOv4와 YOLOv5 모델을 통해 예측하여 마스크의 착용 여부를 판단하되, 앙상블 기법을 적용하여 보다 효과적인 BB(Bounding Box) 추출 및 마스크 착용 탐지 기법을 적용한다. 따라서 공공장소의 마스크 착용실태를 효과적으로 모니터링 할 수 있는 방법을 제안한다.

  • PDF

Object detection model conversion and weight reduction for efficient operation in embedded environment (임베디드 환경에서 효율적인 동작을 위한 객체검출 모델 변환 및 경량화)

  • Choi, In-Kyu;Song, Hyuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.244-245
    • /
    • 2022
  • 최근에는 우수한 성능의 딥러닝 기술을 활용한 장비와 프로그램이 개발되고 있으나 기술의 특성상 모든 환경에서 우수한 성능을 보여주지 못하고 고 사양의 서버와 같은 환경에서의 성능만을 보장하고 있다. 따라서 이에 대한 개선으로 엣지 디바이스 독립적으로 혹은 클라우드 의존과 인터넷 연결을 최소화 할 수 있는 엣지 컴퓨팅 기술이 제안되고 있으며 경량 내장형 시스템에 적합한 인공지능 기술의 개발이 필요하다. 본 논문에서는 객체검출 모델을 적은 연산과 효율적인 구조로 설계하고 생성된 모델을 임베디드 보드에서 원활하게 실행할 수 있도록 중립 모델로 변환하고 경량화 하는 방법에 대해 소개한다. Qualcomm snapdragon 프로세서가 갖춰진 임베디드 보드를 목표로 하였고 편의를 위해 SNPE(snapdragon neural processing engine) SDK를 이용하여 실험을 진행하였다. 실험 결과 변환된 중립모델이 기존 모델과 비교하여 압축된 모델 크기 대비 미미한 성능 저하가 발생함을 확인할 수 있었다.

  • PDF

Scene extraction technology on deep learning for media production (미디어 제작을 위한 씬 검출 기법)

  • Song, Hyok;Ko, Min-Soo;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.184-185
    • /
    • 2022
  • 인터넷 환경의 변화에 따라 텍스트 기반의 정보 전달에서 멀티미디어 기반의 스트리밍 방식으로 바뀌어가고 있다. 또한 대용량의 동영상 데이터뿐 아니라 Shorts, Clip Reels 또는 등 다양한 방식의 동영상 형태로 배포되고 있으며 서비스 플랫폼에서는 손쉽게 편집할 수 있도록 기능을 제공하고 있다. 대용량 콘텐츠, TV, Youtue 콘텐츠를 포함하여 소용량 동영상 편집에 필요한 영상 제작 기술에서 가장 인력과 시간이 많이 소요되는 부분은 편집 단계로 딥러닝 기반 인공지능 기술을 활용하여 자동화하고 있으며 영상편집에서 가장 기본이 되는 단위인 씬검출 기법을 개발하였다. 키프레임 검출 기법과 유사도 기법을 이용하여 씬을 추출하였으며 블록 Cost Function을 이용하여 최적화하여 0.5214의 정확도를 도출하였다.

  • PDF

Identifying Pig Image Objects Acquired from Non-Ideal Camera Angle (비이상적 카메라 각도에서 취득된 돼지 이미지 객체식별)

  • Kim, Sung-Hoon;Zhou, Heng;Kim, Sang-Cheol
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.487-489
    • /
    • 2022
  • 농축산업계는 현재 고효율의 자동화 시스템을 구축하기 위해 많은 연구들이 진행되고 있다. 가축들에 대한 실시간 건강 관리 시스템 구현을 위해 딥러닝, 인공지능 기술들을 활용한 스마트 축사개발에 박차를 가하고 있다. 가축들의 건강은 수익과 직결되는 것은 물론, 사람의 건강까지 위협할 수 있기 때문에 철저한 관리가 필요한 실정이나 여러 기술적 어려움에 부딪히고 있다. 본 연구소는 이를 해결하기 위해 다양한 변수들을 설정, 수집하여 가축들의 건강을 관측하는 기술을 개발하고 있다. 이 논문에서는 악조건에서 수집된 데이터로 우리 내 돼지를 Tracking 한 실험 결과를 소개하고자 한다.

A Classification Model for Distinguishing the Types of Fine-dust (미세먼지 종류의 구분이 가능한 분류모델)

  • Minhye Jeon;Seokho Ahn;Young-Duk Seo
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.90-91
    • /
    • 2023
  • 대기오염에 대한 사회적 관심이 증가함에 따라 미세먼지 관련 IoT 가전제품의 수요가 증가하였다. 이에 따라 IoT 제품에서 수집되는 실내 데이터의 정확성을 높이기 위해 미세먼지 센서 외의 추가적인 센서를 사용하여 관측치를 예측하는 연구가 진행되고 있다. 하지만 기존 연구에서는 센서의 물리적 한계를 인공지능을 통하여 극복하려는 시도는 존재하지 않는다. 본 논문에서는 추가적인 센서를 사용하지 않고 단일 센서만을 사용하여 미세먼지 종류의 구분 가능성을 판단하고자 하며 이를 정확도 기반으로 비교 실험을 진행하여 가장 좋은 성능을 나타낸 딥러닝 기반 분류모델을 선정한다.

YOLO-based School Violence Detection System (YOLO 기반 학교폭력 감지 시스템)

  • Chanhwi Shin;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.703-704
    • /
    • 2023
  • 학교폭력은 교육 환경에서 심각한 문제이다. 피해자에게 심리적 고통과 육체적 상해를 입히고 학교 내 안전과 안정성을 위협한다. 이에 많은 교육기관과 정부 기관이 학교폭력 예방과 대처를 위한 다양한 방안을 제시하고 있지만, 여전히 어려운 문제이다. 최근에는 인공지능 기술을 활용하여 학교폭력 방지와 대처에 관한 연구가 이루어지고 있다. 본 연구에서는 YOLOv5(You Only Look Once version 5) 딥러닝 알고리즘을 활용하여 학교 내부에서 발생하는 폭력 행위를 실시간으로 탐지하는 모델을 제안한다. 이 모델은 CCTV와 같은 영상 데이터를 입력으로 받아들여 학교 내부에서 발생하는 폭력 행위를 실시간으로 식별하는 것을 목표로 한다.

  • PDF