• Title/Summary/Keyword: 인공지능산업

검색결과 1,075건 처리시간 0.024초

데이터 리터러시를 위한 머신러닝 기반 AI 융합 수업 모형 개발 (Development of AI Convergence Education Model Based on Machine Learning for Data Literacy)

  • 강상우;이유진;임효정;최원근
    • 산업과 과학
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2024
  • 본 연구는 고등학교 학생들의 데이터 리터러시를 함양할 수 있는 머신러닝 기반 AI 융합 수업 모형과 수업 설계 원리를 개발하고, 그에 따른 상세 지침을 개발하는 것을 목적으로 하였다. 이를 위해 선행 문헌 연구를 통해 머신러닝을 기반으로 한 수업 모형과 설계 원리 및 상세 지침을 개발하고, 서울 소재 상업계열 특성화고등학교 학생 15명에게 적용하여 실행하였다. 연구 결과 학생들의 데이터 리터러시가 통계적으로 유의미(p< .001)하게 향상되었으므로 본 연구의 수업 모형이 학습자의 데이터 리터러시 향상에 긍정적인 영향을 주었음을 확인할 수 있었고, 앞으로 관련 연구로 이어지길 기대한다.

생성형AI 서비스의 성공요인에 대한 탐색적 연구: 텍스트 마이닝과 ChatGPT를 활용하여 (An Exploratory Study of Success Factors for Generative AI Services: Utilizing Text Mining and ChatGPT)

  • 양지훈;양성병;윤상혁
    • 경영정보학연구
    • /
    • 제25권2호
    • /
    • pp.125-144
    • /
    • 2023
  • 기존에는 사람이 생성하던 문장, 이미지, 음성 등을 인공지능 기술을 활용하여 자동으로 생성할 수 있게 되면서, 생성형AI 기술이 전 세계적인 관심을 받고 있다. 특히, 대표적 생성형AI 서비스인 ChatGPT는 기존 챗봇 서비스와 차별화되는 능동성과 정확도를 보여주며, 단기간에 이용자 수가 급증하고 있다. 이렇듯 생성형AI 서비스에 대한 관심이 높아지고 있음에도 불구하고, 대부분의 선행연구는 아직 초기 수준에 머무르고 있다. 이에, 본 연구는 생성형AI 서비스의 성공요인을 도출하고 이를 바탕으로 성공적인 비즈니스 전략을 제안하기 위해 LDA 토픽모델링과 키워드 네트워크 다이어그램을 활용하였다. 또한, ChatGPT를 사용하여 기존 텍스트마이닝 방법론을 보완하는 새로운 연구방법론을 제시하였다. 본 연구는 선행연구들의 한계를 극복하고, 생성형AI의 미래 발전에 대한 학술적 및 실무적 시사점을 제공했다는 점에서 의의가 있다.

한국군에 모자이크전 개념 적용을 위한 조건과 전략 -AI 의사결정지원체계를 중심으로- (Conditions and Strategy for Applying the Mosaic Warfare Concept to the Korean Military Force -Focusing on AI Decision-Making Support System-)

  • 안지혜;민병기;엄정호
    • 융합보안논문지
    • /
    • 제23권4호
    • /
    • pp.122-129
    • /
    • 2023
  • 제4차 산업혁명 기술의 혁신적 발전에 따라 전쟁의 패러다임이 변화하고 있다. 특히, 미군의 군사혁신 측면에서 제안된 모자이크전은 다양한 무기, 플랫폼, 정보시스템, 인공지능 등 다양한 자원과 능력을 조합하여 유동적인 작전 수행과 상황에 대응하는 능력을 강화하는 것을 목표로 한다. 이러한 개념의 도입은 AI 참모와 인간 지휘자의 결합으로 효과적이고 신속한 지휘통제를 촉진할 수 있다. 모자이크전은 이미 러시아의 침공에 대응하기 위해 우크라이나군의 작전에 도입된 바 있다. 본 논문은 미래전의 모델로 제안되고 있는 모자이크전 개념을 중심으로 전장 패러다임 변화에 따른 한국형 모자이크전 개념 도입을 위한 조건을 도출하고 전략을 제시한다.

시각예술 창작과 인공지능 협업의 상호작용에 관한 실증연구 (Empirical Research on the Interaction between Visual Art Creation and Artificial Intelligence Collaboration)

  • 김현진;김영조;윤동현;이한진
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.517-524
    • /
    • 2024
  • ChatGPT와 같은 생성형 AI는 21세기의 인간과 기계 간 상호작용에 새로운 패러다임을 제시했다. 이러한 기술의 발전이 다양한 분야에 빠르게 퍼져나가면서, AI와 꽤 멀리 떨어져 있다고 생각되었던 예술 분야에서도 AI가 어떤 역할을 할 수 있는지에 대한 연구가 활발히 진행되고 있다. 이에 본 연구는 제 4차 산업혁명의 시대에 시각예술 교육에서 생성형 AI의 활용 가능성을 탐구하고자 한다. 경북에 위치한 4년제 대학에서 진행된 실증연구는 창의적 융합모듈 수업에 참여한 70명의 학생들을 중심으로, AI와 시각예술 분야에서 협업의 영향, 그 중에서도 전공, 학년, 성별에 따른 차이점을 분석했다. 결과적으로, AI와 함께하는 시각예술 창작 활동이 학생들의 창의성과 디지털 미디어 리터러시에 긍정적인 영향을 미치는 것을 확인하며, 이를 기반으로 더욱 효과적인 교육 전략과 방향 모색에 관해 제언한다.

RNN 알고리즘을 이용한 다매체 다중경로 최적화 네트워크 기술 개발 (Development of multi-media multi-path Optimization Network Technology Using RNN Algorithm)

  • 박복기;김영동
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.95-104
    • /
    • 2024
  • 미래 전장의 전쟁수행 역량은 AICBMS(AI, Cloud, Bigdata, Mobile, Security)라 일컫는 4차 산업혁명의 차세대 기술을 적용하여 혁신적인 국방력을 확보할 수 있는가에 달려 있다 해도 과언이 아니다. 또한, 미래의 군 작전환경은 네트워크를 기반으로 모든 무기체계가 하나의 통합된 정보통신망 내에서 실시간으로 전장정보를 상호공유하며 작전을 수행하게 되는 네트워크 중심전(NCW)으로 급변하고, 유·무인 복합전투체계 운용범위로 확대되고 있다. 특히, 초고속, 초연결성을 책임지는 통신 네트워크는 여러 전투 요소를 연결하고 정보의 원활한 유통을 위해 높은 생존성과 다계층(국방 모바일, 위성, M/W, 유선) 네트워크 기반의 전력 운용의 효율성을 요구한다. 이러한 관점에서 본 연구는 제원이 고정된 기존의 단일매체, 단일경로 전송과는 달리, 가용한 통신 유무선 인프라 다매체를 동시 사용하여 통신량 폭주시 부하분산과 RNN(Recurrent Neural Networks) 알고리즘을 이용한 인공지능 기반의 전송기술로 다매체다중경로(MMMP-Multi-Media Multi-Path) 적응적 네트워크 기술 개발하는 것이다.

머신러닝 기반 AI가 적용된 항공 소프트웨어 인증체계 (Certification Framework for Aviation Software with AI Based on Machine Learning)

  • 배동환;윤효중
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.466-471
    • /
    • 2024
  • 항공 분야에도 머신러닝 (ML; machine learning) 기반의 인공지능(AI; artificial intelligence)를 활용하는 시스템 개발이 본격적으로 시작되었다. 항공용 소프트웨어는 항공무선기술위원회(RTCA; Radio Technical Commission for Aeronautics) DO-178C 또는 DO-278A 등의 표준을 통해 안전성 보증을 하고 있으며, 이 표준들은 결정론적 특성과 설명가능성을 내재한 소프트웨어를 대상으로 개발되었고 잘 적용된다. 반면 ML 기반 AI는 그 특성을 고려할 때, 이러한 기존 소프트웨어 인증 표준 적용만으로는 그 신뢰성을 제대로 보증하기 어렵다. 본 논문에서는 유럽항공안전청(EASA; european union aviation safety agency)이 이에 대응하기 위해 제시하는 새로운 인증 방법론에 대해 알아보고, AI가 적용된 항공 소프트웨어 인증을 위해 국내 규제당국과 산업계가 어떤 준비를 해야 하는지 논의한다.

문화유산 기록관리 분야 AI기술 적용 사례 -'문화유산 찾아-ZOOM'을 중심으로- (Examples of AI Technology Applications in the Field of Cultural Heritage Record Management -Focusing on "Finding Cultural Heritage - ZOOM"-)

  • 백주현
    • 한국기록관리학회지
    • /
    • 제24권3호
    • /
    • pp.145-156
    • /
    • 2024
  • 본고는 국립문화유산연구원 기록관에서 진행해온 'AI기반의 문화유산 연구기록물 학습데이터 및 검색시스템 구축' 사례를 통해 최신 첨단기술과 기록관리 분야의 접목이 업무 뿐 아니라 기록정보서비스에 새로운 가능성을 창출할 수 있을 것인지에 대한 적용방안 및 추진과정을 소개하고 있다. '문화유산 찾아-ZOOM'은 1973년부터 현재까지 문화유산 분야에서 발간한 간행물에 수록된 이미지를 학습데이터로 구축하여, 유사 이미지를 동시에 제시함으로써 연구 자료에 대한 사전 수요 예측이 가능하도록 선제적으로 제공하고 있는 시스템이다. 4차 산업혁명으로 인한 첨단기술과 기록관리 분야에 새로운 변화와 발전을 도모하고자 시도한 사례로, 기록관리, 문화유산 분야 연구자들 뿐만 아니라, 실무자와 일반대중에게도 유용한 정보로 활용되기를 바란다.

AI 프로필 사진에 대한 10대 소비자 인식 및 행동 분석 (Analysis of Teen Consumers' Perceptions and Behaviors Regarding AI Profile Photography)

  • 이도협;김유진
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.699-705
    • /
    • 2024
  • 본 연구는 최근 등장한 AI 프로필에 대한 10대 청소년들의 인식과 사용 실태를 조사하여 이 기술의 긍정적 활용 방향을 탐구하는 목적이 있다. AI 기술 발전은 다양한 산업에 변화를 일으켰으며, 2023년부터 시작된 AI 프로필 서비스는 SNS 프로필이나 개인 블로그 이미지로 많이 사용되며 큰 인기를 끌었다. 그러나 최근 주민등록증과 같은 식별 목적의 신분증에 사용하면서 사회적 논란이 되고 있다. 그러나 청소년들을 대상으로 한 조사 결과, 신분증 발급을 위한 목적으로 AI 프로필을 사용하지 않았다. AI 프로필 서비스에 대한 만족도는 높았으나, 부자연스러움과 제한된 스타일에 대한 불만도 있었다. 그리고 남학생보다 여학생들의 AI 프로필에 대해 높은 인식과 사용 경험을 보였다. 본 연구는 AI 프로필 개발 및 마케팅 전략 수립과 AI 프로필과 관련된 국가 정책 마련에 참고 자료가 될 수 있을 것이다.

검색 증강 생성(RAG) 기술의 최신 연구 동향에 대한 조사 (A Survey on the Latest Research Trends in Retrieval-Augmented Generation)

  • 이은빈;배호
    • 정보처리학회 논문지
    • /
    • 제13권9호
    • /
    • pp.429-436
    • /
    • 2024
  • Large Language Model(LLM)의 급격한 발전은 자연어 처리 분야에 혁신을 불러 일으켜 이를 적절하게 활용하는 것이 중요한 주제로 떠오르고 있다. 방대한 데이터로 훈련된 LLM은 다양한 주제에 대한 텍스트 생성이 가능하여 콘텐츠 생성, 기계 번역, 챗봇 등 여러 방식으로 적용이 가능하나 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어렵다는 단점이 존재한다. 모델 훈련이 완료된 이후의 최신 정보로 즉각 업데이트되기도 어려우며, 모델이 실제로 존재하지 않는 정보나 오류에 대해 그럴 듯하게 답변하는 환각 현상(Hallucination) 역시 주요 문제점이다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval-Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상하기 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 RAG의 기본 아키텍처를 소개하고, LLM에 RAG를 적용하기 위한 연구 및 최적화의 최신 동향을 분석한다. RAG를 평가하기 위한 다양한 기법들을 소개하고, 실제 산업에서 RAG를 활용하기 위해 성능을 최적화하거나 응용한 사례들을 분석한다. 이를 바탕으로 향후 RAG 모델이 발전할 수 있는 연구 방향성을 제시하고자 한다.

머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구 (A fundamental study on the automation of tunnel blasting design using a machine learning model)

  • 김양균;이제겸;이승원
    • 한국터널지하공간학회 논문집
    • /
    • 제24권5호
    • /
    • pp.431-449
    • /
    • 2022
  • 지금까지 국내에서는 수 많은 터널들이 완공되어 오면서 시공에서뿐 아니라 설계에서도 다양한 경험과 기술이 지속적으로 축적되어 왔다. 따라서 이제는 매우 복잡한 지질조건 또는 특수한 터널구조가 아니라면 일반적인 터널설계작업은 설계 항목에 따라 기존 유사 설계사례를 수정 또는 보완하는 것만으로도 충분한 경우도 적지 않다. 특히 터널발파설계의 경우, 실제 터널시공시 현장에서 시험발파를 통해 시공을 위한 발파설계를 추가로 수행하는 것이 일반적이라는 것을 감안할때, 설계단계에서 수행하는 발파설계는 예비설계 성격을 지니고 있어 기존의 유사 설계사례를 참고하는 것도 타당하다고 사료된다. 한편 최근 4차산업혁명시대에 들어서면서 전 산업분야에 걸쳐 그 활용도가 급증하고 있는 인공지능은 터널 및 발파분야에서도 다양하게 활용되고 있지만, 발파터널의 경우 발파진동 및 암반분류 등의 예측 분야에서 주로 활용되고 있을 뿐 터널발파패턴 설계에 활용된 사례는 많지 않다. 따라서 본 연구에서는 터널발파설계를 인공지능의 한 분야인 머신러닝 모델을 이용하여 자동화하기 위한 시도를 하였다. 이를 위하여 25개 학습용 터널설계 자료 및 2개의 시험용 설계자료에서 4가지의 입력데이터(지보패턴, 도로유형, 상반 및 하반 단면적) 및 16개의 출력데이터(심발공 종류, 비장약량, 천공수, 각 발파공 그룹별 공간격과 저항선 등)를 발췌하였다. 이를 기반으로 3가지 머신러닝 모델, 즉, XGBoost, ANN, SVM 모델을 시험한 결과 XGBoost모델이 상대적으로 최상의 결과를 나타내었다. 또한 이를 이용하여 실제 발파설계 상황을 가정하여 발파패턴을 제안하도록 한 결과 일부 항목에서 보완이 필요하긴 하지만 일반적 설계와 유사한 결과를 나타내었다. 본 연구가 기초연구 성격이어서 전체 발파설계를 완벽하게 수행하기는 아직 부족하지만, 향후 충분한 발파설계데이터를 확보하고 세부적인 처리과정을 보완하여 실용적인 활용이 가능하도록 추가 연구를 수행할 계획이다.