ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.
본 논문은 착용형 증강현실(Augmented Reality, AR) 기반 체험형 콘텐츠인 AR 돌탑 콘텐츠를 제안한다. 착용할 수 있는 형태의 증강현실이 주목받고 있음에도 불구하고 기술 수용은 산업현장 등 특수한 목적으로의 응용이 집중적으로 개발되고 있는 현황이다. 반면 제안한 AR 돌탑 콘텐츠는 일반 사용자들이 공감하고 쉽게 참여할 수 있도록 '돌탑' 소재를 바탕으로 하고 있으며, 이동 환경에서 공간을 활용하고 자연스러운 손 제스처를 바탕으로 돌을 찾고 쌓을 수 있도록 구성하였다. 제안한 AR 돌탑 콘텐츠는 HoloLens 2 환경에서 구현되었으며 소규모 미술관에서 파일럿 전시를 통해 일반 사용자를 대상으로 평가를 수행하였다. 평가 결과 콘텐츠에 대한 전반적인 만족도는 평균 3.85로 나타났으며, 돌탑 소재에 대한 콘텐츠 적절성은 4.15로 매우 높게 나타났다. 특히, 그중에서도 콘텐츠 이해도와 사운드에 대한 만족도는 높게 나타났으나, 객체인지와 신체 적응도 및 객체 컨트롤에서 다소 낮은 만족도를 보였다. 위와 같은 사용자 평가를 통해 소재에 대한 공감대와 긍정적인 반응을 확인하고, 착용형 AR 환경에서의 체험과 상호작용에서의 일반 사용자의 어려움을 확인하였다.
미국 오픈AI사가 개발한 대화형 인공지능(AI) 챗봇 'ChatGPT'가 전 세계적으로 큰 반향을 일으키고 있다. 일부 학계에서는 ChatGPT를 학생들이 표절에 사용할 수 있다며 우려를 표하고 있는 실정이나, ChatGPT는 마케팅문구나 웹사이트 문구를 쓰는 데 활용되는 등 긍정적인 방향으로도 많이 사용되고 있다. 또한 ChatGPT가 '검색'의 새로운 미래가 될 수 있다는 의견도 생겨나고 있으며, 지나친 규제보다 육성에 초점을 맞춰야 한다는 분석도 제기되는 상황이다. 본 연구는 ChatGPT와 표절검사시스템에 대한 인식도 조사를 통해 대학생들의 ChatGPT에 대한 의식을 분석하고, ChatGPT와 표절검사시스템을 활용한 교육지원 모델 구축 방안을 마련하였고 ChatGPT와 표절검사시스템을 활용한 교육지원 모델 구축 방안을 제시하기 위하여 ChatGPT에 대한 기존의 연구들과 표절검사시스템에 대하여 조사하고 분석하였다. 그리고, 이것을 토대로 ChatGPT를 활용한 대학 교육 지원 모델을 구축하였다. ChatGPT를 활용한 교육 모델은 텍스트, 디지털, 예술 등의 기반으로 교육 모델를 설정하고 그 아래로 4차 산업혁명시대에 필요한 세부적인 역략으로 구성하였다. 그리고, 학습 목표에 따라 수업의 교수자가 ChatGPT가 생성하는 콘텐츠의 허용 범위를 결정한 후, 표절검사시스템에서 제공하는 ChatGPT 감지 기능을 활용하여 학생들이 허용된 범위 내에서 ChatGPT를 활용하도록 지도하도록 구성하였다. 이와 같은 방식으로 ChatGPT와 표절검사시스템을 연계하여 활용함으로써 ChatGPT의 우수한 능력이 교육에 악용되는 상황을 막을 수 있을 것으로 기대된다.
사회문화적 변화와 고령화에 따른 독거노인 등의 증가로 고독사는 꾸준히 증가하고 있으며 각 지자체마다 사회적 문제로 정의하기 시작하였으며, 정부에서도 고독사 문제에 대응하기 위해 제도적 기반을 마련하는 등 고독사 예방을 위한 법적근거를 제정하기 시작하였다. 본 연구는 고독사 예방을 위한 정책방안 모색을 위하여 고독사 예방을 위한 비대면 정책 추진을 위해 대구광역시에서 추진하고 있는 스마트 디지털 정보기술(AI, IOT)을 활용한 고독사 예방정책 사례를 살펴보았다. 고독사 관련 정책은 고독사 예방사업과 발굴 후 지원사업의 두 가지 축으로 구분한다. 이들사업을 효율성 있게 운영하기 위해서는 인공지능, 사물인터넷을 통한 비대면 서비스의 제공 등이 새로운 서비스 전달체계 방식으로 인식되고 있으므로, 비대면 서비스의 중요성과 필요성이 더욱 증대되고 있다. 국가 차원의 비대면 산업 확대를 위한 시스템 구축 등 다각적인 변화와 준비가 필요한 시점이라고 할 수 있으며 향후 또 다른 국가 재난 상황에서 대응할 수 있도록 고독사 예방 등 다양한 복지정책에서 비대면 스마트돌봄체계가 확대되고 활성화되어야 할 것이다.
최근, 몰입형 가상현실(IVR) 환경에서 가상 객체(Virtual Object)를 이용한 상호작용을 통해 교육, 의료, 산업, 원격지 협업 등 다양한 서비스에 활용되고 있다. 특히, 인공지능(AI) 기술을 접목하여 가상 휴먼을 사용자에게 가시화하고, 상호작용을 수행하는 연구가 활발하게 진행되고 있고, 이를 확장한 가상 반려동물에 관한 연구도 시작되고 있는 단계이다. 몰입 VR공간에서 가상 반려동물과 상호작용을 수행하기 위해서는 실제 환경에서 반려동물과 신체 접촉(쓰다듬기 등) 및 제스처와 같은 비언어적 상호작용(Non-verbal Interaction)이 소통을 위해 중요한 것처럼 가상 환경에서도 이러한 상호작용의 재현을 통해 몰입 경험을 높이는 요소에 대한 영향 분석이 필요하다. 본 논문에서는 몰입형 VR 환경에서 사용자가 가상 반려동물과 상호작용 체험을 수행할 때 패시브 햅틱(Passive Haptic)을 제공하고, 그 촉각(Tactile) 요소에 대한 영향 분석을 수행하였다. 패시브 햅틱의 촉각(Tactile) 요소를 모양(shape), 재질(texture) 항목으로 분류하여 그 변화의 정도에 따라 상호작용 효과에 어떠한 영향이 있는지 측정하였다. 실험 결과, 패시브 햅틱 피드백이 제공되는 몰입형 가상 환경에서 가상 반려동물 상호작용을 수행할 때 재질 요소의 단계(Level)의 차이에 따라 몰입감(Immersion), 공존감(Co-presence), 사실감(Realism), 친근감(Fridenliness) 측면에서 통계적으로 유의미한 차이가 있다는 것을 알 수 있었다. 또한, 재질과 모양에 따른 통계적 상호작용 영향 분석에서 친근함 측정 결과에서 불쾌한 골짜기(Uncanny Valley) 효과가 있다는 것을 확인하였다. 본 논문의 연구 결과는 가상 반려동물 상호작용을 수행하는 콘텐츠 개발에 가이드라인으로 기여할 것으로 기대된다.
세계 주요 강국들은 4차 산업혁명 시대를 맞아 인공지능, IoT, 빅데이터 등의 기술 혁신을 통해 생산성을 높이고 경제·사회 구조를 재편하고자 연구 및 개발(R&D) 지원을 강화하고 있다. 하지만, 점차 감소하는 R&D 예산 증가율과 2024년 큰 폭으로 감소 예정인 한국 정부의 R&D 예산은 국가 차원의 R&D 성과 관리 체계 수립에 대한 논의를 절실하게 만드는 요인임을 강조한다. 본 연구는 출연연의 성과 결정요인에 관한 양적 통계 분석 연구에 주로 초점을 맞췄던 이전 연구와 달리 구성적 관점에서 요인들의 상호작용을 고려한 퍼지집합 질적 비교 분석(fsQCA)을 활용함으로써 전체적인 시각에서 출연연의 성과 도출에 영향을 미치는 요소들을 살펴본다. 이를 위해 2018년부터 2022년까지의 데이터를 바탕으로 출연연의 세 가지 성과(논문, 특허, 기술료)를 조사하였으며, 분석 결과는 각 성과를 달성하는 데 기여하는 요소들의 조합을 보여준다. 본 연구는 출연연의 성과에 영향을 미치는 요소의 구성을 통해 각 기관의 특성에 맞춘 성과 향상에 관한 지침을 제공하며, 국가 연구개발 정책의 효율적 관리 및 성과 평가 패러다임에 대한 시사점을 제공한다.
챗봇은 편리한 기능뿐만 아니라 친근하고 인간적인 경험을 제공하는 대화형 소통 도구로서 활용 범위가 크게 확대되고 있다. 쌍방향 소통이 가능한 챗봇은 사용자와 정보를 주고받으며 다양한 과업을 수행할 수 있는데, 이 때 사용자는 의도적으로 부정확한 정보를 제공하기도 한다. 본 연구는 온라인 데이팅 서비스 이용 상황에서 대화형 에이전트에 대한 사회적 실재감, 개인 정보 제공에 대한 지각된 위험, 알고리즘에 대한 신뢰를 주요한 영향 요인으로 고려하여, 이들이 부정확한 정보 제공 의도에 미치는 영향을 파악하고, 그 효과가 에이전트 유형에 따라 변하는지를 함께 살펴보았다. 이를 위해, Amazon Mechanical Turk(MTurk)으로부터 데이터를 수집하고 구조방정식 모형을 이용하여 분석하였다. 분석 결과, 부정확한 정보 제공 의도에 관련된 요인들 간의 유의미한 관계를 확인하고 나아가 이들이 에이전트 유형에 따라 달라지는 것을 실증적으로 확인하였다. 본 연구 결과를 통해 온라인 환경에서 부정확한 정보 제공 행위에 대한 학술적인 시사점 및 이런 의도를 감소시키기 위한 챗봇 설계 방안 등의 실무적 시사점을 도출하였다. 또한, 온라인에서의 부정확한 정보로 인해 발생할 수 있는 결과에 대한 윤리적인 시사점도 논하였다.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.
데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.