• Title/Summary/Keyword: 인공지능모델

Search Result 1,597, Processing Time 0.024 seconds

Guidelines for Data Construction when Estimating Traffic Volume based on Artificial Intelligence using Drone Images (드론영상과 인공지능 기반 교통량 추정을 위한 데이터 구축 가이드라인 도출 연구)

  • Han, Dongkwon;Kim, Doopyo;Kim, Sungbo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.147-157
    • /
    • 2022
  • Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.

AI-based Cybersecurity Solution for Industrial Control System (산업제어시스템을 위한 인공지능 보안 기술)

  • Jo, Bu-Seong;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.97-105
    • /
    • 2022
  • This paper explains trends in security technologies for ICS. Since ICS is usually applied to large-scale national main infrastructures and industry fields, minor errors caused by cyberattack could generate enormous economic cost. ICS has different characteristic with commonly used IT systems, so considering security threats of ICS separately with IT is needed for developing modern security technology. This paper introduce framework for ICS that analyzes recent cyberattack tactics & techniques and find out trends in Intrusion Detection System (IDS) which is representative technology for ICS security, and analyzes AI technologies used for IDS. Specifically, this paper explains data collection and analysis for applying AI techniques, AI models, techniques for evaluating AI Model.

The Development of Interactive Artificial Intelligence Blocks for Image Classification (이미지 분류를 위한 대화형 인공지능 블록 개발)

  • Park, Youngki;Shin, Youhyun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.1015-1024
    • /
    • 2021
  • There are various educational programming environments in which students can train artificial intelligence (AI) using block-based programming languages, such as Entry, Machine Learning for Kids, and Teachable Machine. However, these programming environments are designed so that students can train AI through a separate menu, and then use the trained model in the code editor. These approaches have the advantage that students can check the training process more intuitively, but there is also the disadvantage that both the training menu and the code editor must be used. In this paper, we present a novel artificial intelligence block that can perform both AI training and programming in the code editor. While this AI block is presented as a Scratch block, the training process is performed through a Python server. We describe the blocks in detail through the process of training a model to classify a blue pen and a red pen, and a model to classify a dental mask and a KF94 mask. Also, we experimentally show that our approach is not significantly different from Teachable Machine in terms of performance.

The improvement of Korean Standard Classification of Diseases prediction model by applying the hierarchical classification system (계층적 분류체계를 적용한 한국질병사인분류 예측 모델의 개선)

  • Geunyeong Jeong;Joosang Lee;Juoh Sun;Seokwon, Jeong;Hyunjin Shin;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.59-64
    • /
    • 2022
  • 한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.

  • PDF

A Case Study on an Educational Model of Medical AI Using Chest X-ray Synthetized by GAN (GAN 으로 합성된 흉부 X-ray 를 활용한 의료 인공지능 교육 모델에 관한 사례 연구)

  • Lee, Gyubin;Yoon, Yebin;Ham, Sojin;Bae, Hyun-Jin;You, Wonsang
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.887-890
    • /
    • 2021
  • 최근 AI 를 활용한 의료 진단 솔루션 시장이 크게 성장함에 따라 의료 인공지능 기술에 대한 대학 교육에 대한 수요가 증가하고 있지만, 개인정보 유출의 위험성 등으로 인하여 의료 데이터를 대학 교육에 활용하기 어려운 실정이다. 본 논문에서는 실제 의료 데이터 대신 생성적 적대 신경망(GAN)으로 합성된 흉부 X-ray 영상을 활용한 의료 인공지능 교육 모델의 사례를 제시한다. 프로메디우스(주)에 의해 제공받은 흉부 X-ray 합성영상을 사용하여, VGG-16 모델을 훈련하고 성능을 검증 및 평가하며 미세조정을 통해 성능을 개선하는 교육 모델을 구성하였다. 또한 교육모델이 의료 인공지능에 대한 학생들의 이해력 향상에 기여한 효과를 정량적으로 평가하였다.

Development of Robust Semantic Segmentation Modeling on Various Wall Cracks (다양한 외벽에 강인한 균열 구획화 모델 개발)

  • Lee, Soo Min;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.49-52
    • /
    • 2022
  • 건물 외벽에 발생하는 균열은 시설물 구조 안전에 영향을 미치며 그 크기에 따라 위험도가 달라진다. 이에 따라 전문검사관의 현장 점검을 통해 발생 균열 두께를 정밀하게 측정할 필요가 있고 최근에는 이러한 현장 안전점검에 인공지능을 도입하려는 추세다. 그러나 기존의 균열 데이터셋은 주로 콘크리트에만 한정되어 다양한 외벽에 강인한 모델을 구축하기 어렵고 균열 두께를 측정하기 위해 정확한 마스크(Mask) 정보가 필요하나 이를 만족하는 데이터셋이 부재하다. 본 논문에서는 다양한 외벽에 강인한 균열 구획화 모델을 목적으로 2,744장의 이미지를 촬영하고 매직 완드 기법으로 라벨링을 진행해 데이터셋을 구축 후, 이를 바탕으로 딥러닝 기반 균열 구획화 모델을 개발했다. UNet-ResNet50을 최종모델로 선정 및 개발 결과, 테스트 데이터셋에 대해 81.22%의 class IoU 성능을 보였다. 본 연구의 기술을 바탕으로 균열 두께를 측정하여 건축물 안전점검에 활용될 수 있기를 기대한다.

  • PDF

An Analysis of the Influence of Block-type Programming Language-Based Artificial Intelligence Education on the Learner's Attitude in Artificial Intelligence (블록형 프로그래밍 언어 기반 인공지능 교육이 학습자의 인공지능 기술 태도에 미치는 영향 분석)

  • Lee, Youngho
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 2019
  • Artificial intelligence has begun to be used in various parts of our lives, and recently its sphere has been expanding. However, students tend to find it difficult to recognize artificial intelligence technology because education on artificial intelligence is not being conducted on elementary school students. This paper examined the teaching programming language and artificial intelligence teaching methods, and looked at the changes in students' attitudes toward artificial intelligence technology by conducting education on artificial intelligence. To this end, education on block-type programming language-based artificial intelligence technology was provided to students' level. And we looked at students' attitudes toward artificial intelligence technology through a single group pre-postmortem. As a result, it brought about significant improvements in interest in artificial intelligence, possible access to artificial intelligence technology and the need for education on artificial intelligence technology in schools.

Development of SW education class plan using artificial intelligence education platform : focusing on upper grade of elementary school (인공지능(AI) 교육 플랫폼을 활용한 SW교육 수업안 개발 : 초등학교 고학년을 중심으로)

  • Son, Won-Seong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 2020
  • With the development of artificial intelligence, a lot of platforms have emerged that enable anyone to easily access and learn about artificial intelligence or create artificial intelligence models. Therefore, in this study, we analyzed various artificial intelligence education platforms and developed and proposed a SW education class plan using a framework-based artificial intelligence education platform for activating artificial intelligence based SW education. The artificial intelligence-based SW education framework aims to cultivate artificial intelligence literacy on the basis of computational thinking. In addition, a learner-centered project class was formed to include elements that could be fused with real life contexts or other subjects. Using this, with the theme of creating an artificial intelligence program to help separate garbage collection, a six-hour project-based class was developed and proposed using practical arts, social studies, and creative experiential activities. This project class was organized using a platform that is not difficult, such as AI Oceans and Entry.

An Artificial Intelligent based Learning Model for BIM Elements Usage (건축 부재 사용량 예측을 위한 인공지능 학습 모델)

  • Beom-Su Kim;Jong-Hyeok Park;Soo-Hee Han;Kyung-Jun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • This study described a method of designing and implementing an artificial intelligence-based learning model for predicting the usage of building members. Artificial intelligence (AI) is widely used in various fields thanks to the development of technology, but in the field of building information management (BIM), the case of utilizing AI technology is very low due to the specificity of the data in the field and the difficulty of collecting big data. Therefore, AI problems for BIM were discovered, and a new preprocessing technique was devised to solve the specificity of data in the field. An artificial intelligence model was implemented based on the designed preprocessing technique, and it was confirmed that the accuracy of predicting the construction component usage of the implemented artificial intelligence model is at a level that can be used in the actual industry.

A Study on Impacts of De-identification on Machine Learning's Biased Knowledge (머신러닝 편향성 관점에서 비식별화의 영향분석에 대한 연구)

  • Soohyeon Ha;Jinsong Kim;Yeeun Son;Gaeun Won;Yujin Choi;Soyeon Park;Hyung-Jong Kim;Eunsung Kang
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.27-35
    • /
    • 2024
  • We aimed to shed light on the issue of perpetuating societal disparities by analyzing the impact of inherent biases present in datasets used for training artificial intelligence models on the predictions generated by Artificial Intelligence(AI). Therefore, to examine the influence of data bias on AI models, we constructed an original dataset containing biases related to gender wage gaps and subsequently created a de-identified dataset. Additionally, by utilizing the decision tree algorithm, we compared the outputs of AI models trained on both the original and de-identified datasets, aiming to analyze how data de-identification affects the biases in the results produced by artificial intelligence models. Through this, our goal was to highlight the significant role of data de-identification not only in safeguarding individual privacy but also in addressing biases within the data.