Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2020R1I1A3068836)
References
- Lane, D. (2021). Machine Learning for Kids: An Interactive Introduction to Artificial Intelligence. No Starch Press.
- Carney, M., Webster, B., Alvarado, I., Phillips, K., Howell, N., Griffith, J., Jongejan, J., Pitaru, A., and Chen. A. (2020). Teachable machine: Approachable web-based tool for exploring machine learning classification. In Extended abstracts of the 2020 CHI conference on human factors in computing systems, 1-8.
- Entry, https://playentry.org/
- Druga, S. (2018). Growing up with AI: Cognimates: From coding to teaching machines. Ph.D. dissertation, Massachusetts Institute of Technology.
- Park, Y. and Shin, Y. (2021). Tooee: A Novel Scratch Extension for K-12 Big Data and Artificial Intelligence Education Using Text-Based Visual Blocks. IEEE Access, 9, 149630-149646. https://doi.org/10.1109/ACCESS.2021.3125060
- Tsur, M. and N. Rusk. (2018). Scratch microworlds: designing project-based introductions to coding. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education, 894-899.
- Resnick, M., Maloney J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779
- Maloney, J., Resnick, M., Rusk, N., Silverman B., and Eastmond, E. (2010). The Scratch programming language and environment. ACM Transactions on Computing Education. 10(4), 1-15, 2010.
- Park, Y. and Shin, Y. (2019). Comparing the effectiveness of scratch and app inventor with regard to learning computational thinking concepts. Electronics, 8(11), 1269-1280. https://doi.org/10.3390/electronics8111269
- Teachable Machine v1,https://www.infoq.com/news/2017/10/teachable-machine/
- Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
- Teachable Machine v2, https://teachablemachine.withgoogle.com/
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861.
- Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4510-4520.
- Leanring Data & Test Data, Github, https://github.com/TooeeAI/kaie2021/