일반적으로 이자율예측모형은 특정한 이자율 분포모형을 가정하여 모수적 방법에 의해 추정되었다. 그러나 특정한 분포모형을 가정한다는 것은 예측능력을 저하시킬 수 있다는 단점이 있다. 따라서 이자율변화에 특정한 분포모형을 가정하지 않는 비모수적 추정이 이자율 예측의 우월한 방법으로 제시되었다. 본 논문에서는 통화안정증권을 대상으로 이자율 예측 모형을 모수적 방법과 비모수적 방법으로 추정한다. 다음 이자율의 시장위험과 채권가격을 결정하여 두 방법 사이에 유의한 차이가 있는가를 분석한다. 1999년 8월 9일부터 2003년 2월 7일까지 통화안정증권의 일별, 주별 자료를 사용하여 분석한다. 액면이자 효과를 제거하기 위해 복리채만을 분석대상으로 한다. 모수적 방법을 이용할 때 이자율 변화의 추세항은 선형으로 나타나지만 변동성항은 이자율변화에 비해 급격히 변하는 비선형을 나타낸다. 비모수적 분석방법을 이용할 때 추세항과 변동성항 모두 이자율 변화에 비해 급격히 변하는 비선형을 나타낸다. 모수적 방법과 비교하여 추세항은 다른 결과를, 그리고 변동성항은 같은 결과를 보인다. 추세항과 변동성항의 예측을 감안하여 이자율의 시장위험 및 채권가격을 산출한 결과 모수적 방법과 비모수적 방법은 유의적인 차이를 보인다. 이는 이자율 및 이자율의 시장위험가격 예측은 비모수적 방법을 사용하는 것이 적합하다는 것을 뜻한다.
본 논문은 2000년 1월부터 2014년 10월까지의 시계열 자료를 사용하여 이자율과 운임이 선가에 미치는 영향을 실증분석하였다. 선행연구와 달리, 동태적 고든(Gordon) 모형을 통하여 이자율이 할인율로써 선가에 미치는 영향을 고려하였으며, 이자율과 운임이 선가에 미치는 동태적 영향을 파악하기 위해 벡터자기회귀모형과 충격반응분석, 예측오차분산분해를 활용하였다. 그 결과는 다음과 같다. 먼저 벡터자기회귀모형의 추정은 선가와 이자율이 유의한 음(-)의 상관성을 가지며, 선가와 운임의 유의한 양(+)의 관계가 존재한다는 것을 보여주었다. 이는 선가의 동태적 고든(Gordon) 모형 하에서 선가는 이자율과 운임에 의존함을 의미한다. 둘째, 이자율과 운임의 동태적 영향이 지속되는 기간을 파악하기 위해 충격반응분석을 실시하였다. 그 결과, 이자율과 운임의 충격에 대한 선가의 반응은 모두 약 7개월 간 지속되는 것을 확인하였다. 마지막으로 예측오차분산분해의 실증결과는 선가 변동을 설명하는데 있어 운임의 영향이 이자율보다 상대적인 비중이 크다는 것을 보여주었다.
본 논문에서는 선도이자율 모형과 리보이자율 모형 사이의 관계를 이용하여 채권 옵션의 해석적인 해(Analytic Solution; AS)와 몬테 카르로 시뮬레이션(Monte Carlo Simulation; MCS)을 이용한 가격 결정을 다룬다. AS를 이용한 채권 옵션가격 결정은 Ritchken and Sankarasubramanian (RS)의 제한 조건을 이용하여 할인된 채권 가격을 구하는 공식을 유도하고, 선도이자율과 리보이자율 모형의 변동함수 사이의 관계를 활용한다. MCS을 이용한 채권 옵션 가격 결정은 MCS을 이용하여 제시된 조건으로부터 여러 가지 예정된 전개의 시뮬레이션을 활용한다. AS와 MCS을 이용한 가격 결정 방법을 실행하여 얻은 가격을 비교하면 AS와 MCS의 상대오차(Relative Error; RE)를 구할 수 있다. 이때 본 연구의 결과로부터 RE가 약 3.9%가 됨을 확인할 수 있다. 이것은 AS뿐만 아니라 MCS을 이용해도 채권 옵션의 가격을 매우 정확하게 예측할 수 있음을 의미한다.
선도환의 가격을 결정하는 접근방법에는 2차자산(derivative assets)이라는 선도계약의 기본특성에 기초한 재정거래(arbitrage)에 의한 방법이 가장 많이 이용되고 있다. 재정거래방식에는 선도환과 현물외환가격간의 상호관련성에 의하여 선도환가격을 이자율평가설(covered interest rate parity : CIRP), 즉 현물가격과 양국간의 이자율차이의 합으로 표시하고 있다. 특히 현물가격과 이자율은 모두 현재시점에서 의사결정자에게 알려져 있기때문에 선도환가격은 확실성하에서 결정되어 미래에 대한 예측이나 투자자의 위험회피도와는 관계없이 결정된다는 것이 특징이다. 이자율평가설에 관한 많은 실증연구는 거래 비용을 고려한 경우 현실적으로 적절하다고 보고 있다(Frenkel and Levich ; 1975, 1977). 다른 방법으로는 선도환의 미래예측기능에만 촛점을 맞추어 가격결정을 하는 투기, 예측접근방법(speculative efficiency approach : 이하에서는 SEA라 함)이 있다. 이 방법 중에서 가장 단순한 형태로 표시된 가설, 즉 '선도환가격은 미래기대현물가격과 같다'는 가설은 대부분의 실증분석에서 기각되고 있다. 이에 따라 SEA에서는 선도환가격이 미래에 대한 기대치뿐만 아니라 위험프리미엄까지 함께 포함하고 있다는 새로운 가설을 설정하고 이에 대한 실증분석을 진행한다. 이 가설은 이론적 모형에서 출발한 것이 아니기 때문에, 특히 기대치와 위험프레미엄 모두가 측정 불가능하다는 점으로 인하여 실증분석상 많은 어려움을 겪게 된다. 이러한 어려움을 피하기 위하여 많은 연구에서는 이자율평가설을 이용하여 선도환가격에 포함된 위험프레미엄에 대해 추론 내지 그 행태를 설명하려고 한다. 이자율평가설을 이용하여 분석모형을 설정하고 실증분석을 하는 것은 몇가지 근본적인 문제점을 내포하고 있다. 먼저, 앞서 지적한 바와 같이 이자율평가설을 가정한다는 것은 SEA에서 주된 관심이 되는 미래예측이나 위험프레미엄과는 관계없이 선도가격이 결정 된다는 것을 의미한다. 따라서 이자율평가설을 가정하여 설정된 분석모형은 선도환시장의 효율성이나 균형가격결정에 대한 시사점을 제공할 수 없다는 것을 의미한다. 즉, 가정한 시장효율성을 실증분석을 통하여 다시 검증하려는 것과 같다. 이러한 개념적 차원에서의 문제점 이외에도 실증분석에서의 추정상의 문제점 또한 존재한다. 대부분의 연구들이 현물자산의 균형가격결정모형에 이자율평가설을 추가로 결합하기 때문에 이러한 방법으로 설정한 분석모형은 그 기초가 되는 현물가격모형과는 달리 자의적 조작이 가능한 형태로 나타나며 이를 이용한 모수의 추정은 불필요한 편기(bias)를 가지게 된다. 본 연구에서는 이러한 실증분석상의 편기에 관한 문제점이 명확하고 구체적으로 나타나는 Mark(1985)의 실증연구를 재분석하고 실증자료를 통하여 위험회피도의 추정치에 편기가 발생하는 근본원인이 이자율평가설을 부적절하게 사용하는데 있다는 것을 확인 하고자 한다. 실증분석결과는 본문의 <표 1>에 제시되어 있으며 그 내용을 간략하게 요약하면 다음과 같다. (A) 실증분석모형 : 본 연구에서는 다기간 자산가격결정모형중에서 대표적인 Lucas (1978)모형을 직접 사용한다. $$1={\beta}\;E_t[\frac{U'(C_{t+1})\;P_t\;s_{t+1}}{U'(C_t)\;P_{t+1}\;s_t}]$$ (2) $U'(c_t)$와 $P_t$는 t시점에서의 소비에 대한 한계효용과 소비재의 가격을, $s_t$와 $f_t$는 외환의 현물과 선도가격을, $E_t$와 ${\beta}$는 조건부 기대치와 시간할인계수를 나타낸다. Mark는 위의 식 (2)를 이자율평가설과 결합한 다음의 모형 (4)를 사용한다. $$0=E_t[\frac{U'(C_{t+1})\;P_t\;(s_{t+1}-f_t)}{U'(C_t)\;P_{t+1}\;s_t}]$$ (4) (B) 실증분석의 결과 위험회피계수 ${\gamma}$의 추정치 : Mark의 경우에는 ${\gamma}$의 추정치의 값이 0에서 50.38까지 매우 큰 폭의 변화를 보이고 있다. 특히 비내구성제품의 소비량과 선도프레미엄을 사용한 경우 ${\gamma}$의 추정치의 값은 17.51로 비정상적으로 높게 나타난다. 반면에 본 연구에서는 추정치가 1.3으로 주식시장자료를 사용한 다른 연구결과와 비슷한 수준이다. ${\gamma}$추정치의 정확도 : Mark에서는 추정치의 표준오차가 최소 15.65에서 최대 42.43으로 매우 높은 반면 본 연구에서는 0.3에서 0.5수준으로 상대적으로 매우 정확한 추정 결과를 보여주고 있다. 모형의 정확도 : 모형 (4)에 대한 적합도 검증은 시용된 도구변수(instrumental variables)의 종류에 따라 크게 차이가 난다. 시차변수(lagged variables)를 사용하지 않고 현재소비와 선도프레미엄만을 사용할 경우 모형 (4)는 2.8% 또는 2.3% 유의수준에서 기각되는 반면 모형 (2)는 5% 유의수준에서 기각되지 않는다. 위와같은 실증분석의 결과는 앞서 논의한 바와 같이 이자율평가설을 사용하여 균형자산가격 결정모형을 변형시킴으로써 불필요한 편기를 발생시킨다는 것을 명확하게 보여주는 것이다.
본 논문에서는 Duan(1995)이 개발한 GARCH 주식옵션가격결정모형을 통화옵션에 적용시켜 GARCH 통화옵션가격결정모형을 유도한 다음, 이를 Garman-Kohlhagen 모형과 유효성을 비교하여 다음과 같은 연구결과를 얻었다. 만기별 및 옵션의 상태별(OTM, ATM, ITM)로 GARCH 통화옵션가격결정모형의 가격오차가 Garman-Kohlhagen 모형보다 일관되게 낮게 나타났다. 이는 GARCH 통화옵션가격결정모형이 Garman-Kohlhagen모형보다 통화옵션의 평가에 더 유용한 모형임을 의미한다. 따라서 통화옵션의 가격을 예측할 때는 환율변동의 이분산성을 고려하여 환율의 변동성을 추정함으로써 통화옵션가격의 예측력을 제고시킬 수 있다고 생각한다. 그러나 GARCH 통화옵션가격결정모형의 모형가격이 시장가격과 상당한 편차를 보이는 경우도 있기 때문에 향후 통화옵션가격결정모형을 계속 발전시키는 과정에서 이자율의 확률적 특성을 반영하거나 환율변동의 점프특성을 도입해야 한다고 생각한다.
본 논문에서는 중기 국채(Treasure Note; T-Note)의 실제 자료를 이용하여 채권 가격에 대한 이자율을 예측하는 동적인 예측 알고리즘을 제안하고 있다. 제안한 알고리즘은 이자율 기간 구조를 근본으로 하고 있으며 표준 위너 과정(standard Wiener process)과 같은 다양한 금융 모형의 대안으로 활용 가능하다. 본 논문에서는 실제 자료의 누적 분포 함수(Cumulative Distribution Function; CDF)를 이용하여 이자율을 측정하였으며 CDF는 수치적 방법인 보간법 중에 자주 활용되는 내츄럴 큐빅 스플라인(natural cubic spline; NCS)방법을 통하여 얻었다. 위에서 얻은 CDF를 통하여 난수 생성기법(random number generation scheme; RNGS)을 이용하여 채권의 가격를 계산하였다. 컴퓨터 시뮬레이션을 통해 얻은 실험결과로부터 제안된 예측 알고리즘에서 엄밀도(precision)의 낮은 값을 얻음으로써 채권의 가치가 더욱 예리하고 정확하게 평가되었음을 확인할 수 있었으며, 이는 매우 근거 있는 예측이라 할 수 있다.
온라인 P2P 대출(Online Peer-to-Peer Lending)이란 대출자(차입자)들이 인터넷 및 모바일 P2P 플랫폼을 통해 대출을 신청하면 P2P 플랫폼 기업이 이를 심사하고, 공개하여 불특정 다수가 자금을 빌려주고 이자를 받는 대출중개 서비스를 말한다. 국내외적으로 P2P 대출시장의 성장과 수익률에 대한 관심이 커진 상황에서 현재는 P2P 대출에 대한 안정성 측면에서 문제가 제기되고 있다. P2P 대출시장은 높은 수익률을 제공하지만 P2P 업체의 연체율과 부실률(채무불이행률)도 함께 높아지고 있는 실정이다. P2P 금융시장의 신뢰도를 높이기 위해서는 P2P 대출의 연체율과 채무불이행률을 줄이는 것이 무엇보다 중요하다. 본 연구는 세계적인 P2P 기업인 렌딩클럽(Lending Club)의 P2P 대출거래데이터베이스를 이용하여 인공지능기반의 P2P 채무불이행 예측모형을 구축하고자 한다. 구체적으로 벤치마크(benchmark) 모형으로 통계기법인 판별분석과 로지스틱 회귀분석을 이용하고, 인공지능기법으로는 신경망, CART, 그리고 C5.0을 이용하여 P2P 대출거래의 채무불이행 예측모형을 구축하고자 한다. 연구결과, P2P 대출거래의 채무불이행 예측을 위해 우선 고려해야 할 변수는 대출이자율이며, 중요도 3순위에 가장 많이 언급된 대출금액과 총부채상환비율도 고려해야 할 요인으로 추출되었다. 전통적인 통계기법보다는 인공지능기법의 예측성과가 더 좋은 것으로 나타났으며, 신경망의 경우 모든 데이터 셋에서 오분류율이 가장 낮은 예측모형으로 나타났다.
추계학적 확률과정을 이용하여 경사제 피복재를 예방적으로 유지관리할 수 있는 조건기반모형을 개발하였다. 완전 보수보강 조건에서 가장 경제적으로 보수보강이 수행되어야 하는 최적의 시점을 결정할 수 있는 모형이다. 본 연구에서 개발된 RRP(Renewal Reward Process) 기반 경제성 모형은 이자율을 고려할 수 있을 뿐만 아니라 기존 연구에서 상수로 취급하던 비용을 시간에 따른 확률변수로 고려할 수 있다. 누적피해와 사용한계 그리고 구조물의 중요도를 모두 고려할 수 있는 함수식을 제시하여 ABM(Age-Based Maintenance)을 CBM(Condition-Based Maintenance)으로 쉽게 확장할 수 있게 하였다. 또한 함수식에 포함된 계수들을 수학적으로 산정할 수 있는 방법도 제시하였다. 두 가지 추계학적 확률과정, WP(Wiener Process)와 GP(Gamma Process)를 이용하여 경사제 사석재를 해석하였다. 사용한계, 이자율 그리고 구조물의 중요도에 따라 시간에 따른 기대총비용율을 산정하여 기대총비용율이 최소가 되는 예방적 유지관리의 최적 시점을 쉽게 추정할 수 있었다. 동일한 사용한계에서 이자율이 높을수록 최적시점은 늦어지고 그에 따라 기대총비용율도 낮아졌다. 또한 상대적으로 GP가 WP보다 더 보수적으로 최적시점을 예측하였다. 마지막으로 동일한 조건에서 구조물의 중요도가 높을수록 더 자주 예방적 보수보강을 실시하여야 한다는 것을 알았다.
전통적으로 기업이 사채차환(社債借換)(bond refunding)을 행하는 이유는 시장이자율이 발행이 자율보다 낮은 경우 단순히 이자비용을 절감하려는데에 그 동기가 있었다. 이러한 전통적인 이자 비용절감이라는 동기외에 타동기에 대해서 사채차환이 주가수익율과 회사의 위험에 미치는 영향에 관한 실증적인 분석은 거의 없었다고 할 수 있다. 본 연구에서는 사채차환에 대해서 (1) 만기연장가설(滿期延長假說), (2) 이자비용절감가설(利子費用節減假說), (3) 세금절감가설(稅金節減假說), (4) 주당순리익가설(株當純利益假說), (5) 제한조항완화가설(制限條項緩和假說) 및 (6) 레버리지가설(假說)등 6가지의 가설(假說)을 계시하고 사채차환(私債借換)의 공표가 보통주수익율과 위험에 미치는 일반적인 영향을 위의 여섯가지 가설하에서 검증을 하였다. 본 연구의 결과 전통적인 이자비용절감 가설은 주식 가격에 음의 영향을 미치는 것으로 나타난 반면, 오히려 세금절감가설이 강하게 지지되었다. 또한 세금절감을 위한 사채차환이 공표되는 경우 주식베타 및 총수익율분산은 Hamada (1969, 1972)의 견해와 같이 유의적인 양의 변화가 나타났다. 부수적으로 외생변수로서의 기업규모는 초과수익과 역의 관계가 나타났으며, 사채차환의 규모효과가 존재한다는 것을 확인하였다. 본 연구의 다양한 사채차환가설의 초과수익예측이 상호배타적이지는 않으나 시장모형의 베타로 측정되는 주식위험의 변화를 도입하는 경우 이러한 가설들의 효과를 명백히 분리시킬 수 있게 된다. 따라서 횡단면 분석시 전통적인 잔차분석방법에 추가적으로 주가베타 및 총수익율분산을 종속변수로 사용했다는 것이 본 연구의 중요한 공헌이라 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.