• 제목/요약/키워드: 이미지 피부진단

검색결과 16건 처리시간 0.035초

이미지 기반 AI 피부 진단 기술과 문진을 결합한 통합 피부진단 기능에 관한 고찰 (Image-Based Skin Diagnosis Using AI Technology Combine with Survey System for Review of Integrated Skin Diagnosis Function)

  • 박학권;임영환;박혁곤;황중원;이상란;조은상;림빈
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.463-468
    • /
    • 2022
  • COVID-19의 장기화는 다양한 산업의 패러다임에 새로운 시도와 변화를 주고 있다. 고객이 직접 피우에 닿고 사용하는 제품을 판매하는 산업에서는 그 현상이 날로 가중된다. 이러한 상황에 대응하고자 최근 Cosmetics 업계에서 다양한 언택트(비대면) 서비스들을 선보이고 있다. 기존 전통 오프라인 채널에서부터 다양한 온라인 채널 확보를 통하여 고객들의 수요와 참여를 끌어내고자 한다. 대표적으로 기존에는 온라인 문진 서비스를 이용하여 고객에게 맞춤 제품을 추천하는 서비스들을 제공하고 있지만 얼마 지나지 않아 한계에 도달하게 된다. 본 논문에서는 기존 정형화된 문진 서비스와 한걸음 더 나아가 AI 기술을 이용한 이미지 기반 피부진단 기능을 결합하는 새로운 방식의 피부진단 서비스에 대하여 연구하였다. 사용자는 촬영된 이미지를 이용하여 몇 가지 항목에 대한 진단을 받게 되고 최종 피부타입을 도출하기 위하여 부족한 진단 항목은 기존에 제안한 피부진단 서비스를 활용하였다. 이런 방식은 기존에 제공되고 있는 문진 서비스보다 재미 요소를 더할 뿐만 아니라 기술 트린드인 AI를 결합하여 더욱 고객 참여를 이끌어 낼 수 있고 가시적이고 정확도가 있는 지속적인 서비스를 만들어 내고자 함에 있다.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.191-203
    • /
    • 2022
  • 화장품 및 뷰티산업에서 고객 맞춤형 제품과 서비스를 제공하는 것은 주요 기술 트렌드이고, 피부상태 진단과 관리는 중요한 필수기능이다. 고객의 요구 수준은 더욱더 높아지고 있으며 이에 대한 다양하고 섬세한 고민과 요구 사항이 소셜미디어 커뮤니티에서 활발하게 다루어지고 있다. 소셜미디어 상의 이미지는 매우 다양하고 비정형적이므로 피부상태 진단 및 관리에 필요한 체계적인 피부 이미지 식별을 위한 시스템이 필요하다. 본 논문에서는 소셜미디어 인스타그램에서 수집한 빅데이터로부터 피부 이미지 데이터를 지능적으로 식별하고, 피부상태 진단 및 관리를 위한 정형화된 피부 샘플 데이터를 추출하는 시스템을 개발하였다. 본 논문에서 제안한 시스템은 빅데이터수집분석단계, 피부이미지분석단계, 훈련데이터준비단계, 인공신경망훈련단계, 피부이미지식별단계로 구성된다. 빅데이터수집분석단계에서는 인스타그램으로부터 빅데이터를 수집하고 피부 상태 진단 및 관리를 위한 이미지 정보를 분석결과로 저장한다. 피부이미지분석단계에서는 전통적인 이미지 처리 기법을 사용하여 피부 이미지의 평가 및 분석 결과를 획득한다. 훈련데이터준비단계에서는 피부이미지 분석결과로부터 피부 샘플데이터를 추출하여 훈련데이터를 준비하였다. 그리고 인공신경망훈련단계에서는 이 훈련데이터를 사용하여 지능적으로 피부 이미지 유형을 예측하는 인공신경망 AnnSampleSkin을 단계별 고도화와 훈련을 통해 모델을 완성하였다. 피부이미지식별단계에서는 소셜미디어로부터 수집된 이미지에 대해 피부샘플을 추출하고, 훈련된 인공신경망 AnnSampleSkin의 이미지 유형 예측 결과들을 통합하여 최종 피부 이미지 유형을 지능적으로 식별한다. 본 논문에서 제안된 피부이미지식별 방법은 약 92% 이상의 높은 피부 이미지 식별 정확도를 나타내고 있고, 정형화된 피부 샘플 이미지 빅데이터를 제공할 수 있게 되었다. 추출된 피부샘플 세트는 피부 상태를 진단하고 관리하는데 매우 효율적이고 유용한 정형화된 피부 이미지 데이터로 사용될 것으로 기대된다.

딥러닝 이미지 인식 기술을 활용한 개인 피부질환 식별용 어플리케이션 설계 (A Design of Application using Deep Learning Image Recognition for Identification of Individual Skin Diseases)

  • 배창희;김형준;조원영;하옥균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.33-34
    • /
    • 2020
  • 사용자의 피부 관리 및 피부질환을 검사하는 기존의 어플리케이션은 유도 질문에 따른 사용자의 응답을 기반으로 결과를 유추하기 때문에 부정확한 진단 결과를 야기한다. 본 논문에서는 사용자의 미용관련 피부질환 이미지를 바탕으로 딥러닝 이미지 인식 기술 적용하여 건선, 사마귀, 여드름, 한포진을 대상으로 피부 미용질환에 대한 식별 정보를 제공하는 어플리케이션을 제시한다. 또한 이미지 인식률이 높은 ResNet과 SE-ResNet 알고리즘을 적용하여 피부질환 식별 적용 시 효과성을 실험적으로 비교한다.

  • PDF

AI 초개인화 맞춤형 피부진단을 위한 한국인 피부상태 측정 데이터 구축 (Constructing a Dataset for Assessing Skin Condition in Koreans for AI-Personalized Customized Skin Diagnosis)

  • 이정호;양주열 ;최민서;최상일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.698-700
    • /
    • 2023
  • 최근 들어, 미용 상품을 선택하기 전에 자신의 피부 타입과 상태를 정확히 파악하고 맞춤형 상품을 선택하고자 하는 수요가 증가하고 있다. 이에 따라 피부 상태 측정을 위한 기술적 요소의 중요성이 더욱 두드러지고 있다. 그러나 현재까지 피부 상태 측정을 위한 데이터셋이 한국인을 대상으로 측정한 데이터셋이 없는 실정이다. 본 연구에서는 한국인의 피부 상태를 정밀하게 분석하기 위해 고해상도 디지털 카메라로 촬영된 이미지, 정밀 피부측정 장비를 활용하여 측정한 정밀 값, 그리고 피부과 전문의가 진단한 피부상태 진단 등급 데이트를 통합하여 제공을 한다. 추후 제작한 데이터셋을 활용하여 개인 맞춤형 미용상품 추천과 개발 등 다양한 분야에 활용하고자 한다.

피부 상태 진단 서비스를 위한 모바일 웹 어플리케이션 개발 (Development of Mobile Web Application for Skin Status Analysis Service)

  • 유제혁;전기백;석장미;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.958-961
    • /
    • 2014
  • 최근 영상 분석을 기반으로 한 서비스 어플리케이션의 공급량이 증가하는 추세이다. 특히, 피부 영상 분석 서비스의 경우 주목할 만한 이슈는 접근의 용이함과 편리성을 갖춘 서비스 어플리케이션의 개발이다. 본 논문에서는 사용자의 피부 상태 진단 서비스를 손쉽게 웹 상으로 제공받을 수 있는 어플리케이션 개발에 주안점을 둔다. 이를 위해 피부 현미경으로 촬영된 이미지에 이진화 및 질감 대비 향상, 노이즈 제거 등의 전처리 과정과 Watershed 알고리즘, 외곽선 검출 등의 과정을 거쳐 수치화된 데이터를 산출한다. 최종적으로 피부 주름, 거칠기, 유분, 톤, 민감성 정보를 검출하며 분석 결과를 사용자에게 보여준다. 분석된 피부 영상 정보를 통해 사용자는 쉽게 자신의 피부 상태를 진단 받을 수 있을 것으로 사료된다.

U-Net 기반 이미지 분할 및 병변 영역 식별을 활용한 반려견 피부질환 검출 모바일 앱 (Mobile App for Detecting Canine Skin Diseases Using U-Net Image Segmentation)

  • 김보경;변재연;차경애
    • 한국산업정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.25-34
    • /
    • 2024
  • 본 논문은 반려견의 피부질환 발병 여부와 부위를 추론하기 위해서 딥러닝 기반 U-Net 모델을 학습하여 이미지 촬영을 통한 반려견의 피부병 발병 여부와 추론되는 병명을 제공하는 애플리케이션을 개발하였다. U-Net은 의료영상 분야에서 주로 사용되는 영역 분할(Image Segmentation) 기반 학습 모델로써 폴리곤 형태의 특정 이미지 영역을 구분하는 데 효과적이다. 따라서 반려견의 피부 이미지에서 병변 영역 식별에 활용할 수 있다. 본 논문에서는 반려견의 6가지 주요 피부질환을 클래스로 정의하고 이를 분별하는 U-Net 모델을 학습시켰다. 이를 모바일 앱으로 구현하여 간단한 카메라 촬영으로 병변 분석과 예측 작업을 수행하여 결과를 제공한다. 이를 통해서 반려인들은 반려동물의 건강 상태를 관찰하고 조기 진단에 도움이 되는 정보를 얻을 수 있다. 이와 같이 딥러닝을 통해서 반려동물 건강관리에 신속하고 정확한 진단 도구를 제공함으로써 가정에서도 손쉽게 이용할 수 있는 서비스 개발에 중요한 의미를 두고 있다.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.137-147
    • /
    • 2022
  • 피부상태의 진단과 관리는 뷰티산업종사자와 화장품산업종사자에게 그 역할을 수행함에 있어서 매우 기초적이며 중요한 기능이다. 정확한 피부상태 진단과 관리를 위해서는 고객의 피부상태와 요구사항을 잘 파악하는 것이 필요하다. 본 논문에서는 피부상태 진단 및 관리를 위해 소셜미디어의 빅데이터를 사용하여 피부상태 진단 및 관리를 지원하는 빅데이터기반 피부관리정보시스템 SCIS를 개발하였다. 개발된 시스템을 사용하여 텍스트 정보 중심의 피부상태 진단과 관리를 위한 핵심 정보를 분석하고 추출할 수 있다. 본 논문에서 개발된 피부관리정보시스템 SCIS는 빅데이터 수집단계, 텍스트전처리단계, 이미지전처리단계, 텍스트단어분석단계로 구성되어 있다. SCIS는 피부진단 및 관리에 필요한 빅데이터를 수집하고, 텍스트 정보를 대상으로 핵심단어의 단순빈도분석, 상대빈도분석, 동시출현분석, 상관성분석을 통해 핵심단어 및 주제를 추출하였다. 또한 추출된 핵심단어 및 정보를 분석하고 산포도, NetworkX, t-SNE 및 클러스터링 등의 다양한 시각화 처리를 함으로써 피부상태 진단 및 관리에 있어 이를 효율적으로 사용할 수 있도록 하였다.

Attention layer를 활용한 이미지 기반 피부암 분류 시스템 (Image-Based Skin Cancer Classification System Using Attention Layer)

  • 이규원;우성희
    • 실천공학교육논문지
    • /
    • 제16권1_spc호
    • /
    • pp.59-64
    • /
    • 2024
  • 고령화가 심화되면서 암 발병률이 증가하고 있다. 피부 암은 외적으로 보이지만 사람들이 알아채지 못하거나 가볍게 간과하는 경우가 많다. 이에 초기 발견 시기를 놓쳐 말기의 경우 생존율이 7.5~11%로 사망에 이를 수 있다. 하지만 피부 암을 진단함에 있어 육안으로 진단하는 것이 아닌 정밀검사, 세포 검사 등 시간과 비용이 많이 든다는 단점이 있다. 따라서 본 연구에서는 이러한 단점을 해결하기 위해 Attention CNN 모델 기반 피부암 분류 시스템을 제안한다. 이 시스템은 전문의로 하여금 피부 암을 초기에 발견하여 신속한 조치를 취할 수 있도록 하는데 큰 도움을 줄 수 있다. 피부암 종류에 따른 이미지 데이터 불균형 문제에서 분포 비율이 낮은 데이터에는 Over Sampling 기법을, 분포 비율이 높은 데이터에는 Under Sampling 기법을 적용하여 완화하고 Attention layer가 없는 모델과 있는 모델을 비교하여 Attention layer가 없는 사전학습 모델에 추가한 피부암 분류 모델을 제안한다. 또한, 특정 클래스에 대하여 데이터 증강 기법을 강화하여 데이터 불균형 문제를 해결할 계획이다.

고압 산소챔버를 활용한 피부표피 반응 사례 연구

  • 민근식;천정민;박노국
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2017년도 춘계학술대회
    • /
    • pp.45-45
    • /
    • 2017
  • 본 연구에서는 고압산소치료 후 포유동물의 피부에서 Melanin 세포의 생성이 줄어들었음을 이미 보고된 바 있고, 치료 후 전층 피부이식 생존율을 높였고, 또한 인체의 피부 진피층 확인은 더 많은 임상데이터가 필요하나 고압산소치료 후 표피면의 변화는 빠른 시간에 확인 할 수 있다고 판단됨으로 이에 피부진단기의 기준면과의 평행(parallel polarization) 이미지로 피부표피의 변화를 확인 하고자 했다. 본 연구의 고압산소챔버를 활용한 피부표피에 대한 분석 및 실험 결과, 주름살 및 상처(Wrinkle & Scar) 분석에서 피실험자 남자1 3%, 남자2 2%, 여자1 5.9%, 여자2 2.3%로 피실험자 모두 감소 현상을 보여 피부 탄력도가 좋아 지는 효과를 보였다. 피부미백(S-Gray) 분석에서는 피실험자의 피부 표피면의 멜라닌 및 에리즈마 색소의 피부 톤이 남자1 1.1%, 남자2 2.3%, 여자1 4% 로 피실험자 4명 중 3명은 상승 효과를 얻었으나, 피실험자 다른 1명인 여자2는 2.3% 하향의 결과가 나타났다. 홍도(Erythema) 분석, 피실험자 정상인 부위인 D.BLUE/BLUE 값이 남자1 5.6%, 남자2 4.9%, 여자1 17.3%, 여자2 15.3% 증가 현상을 보였으며 남자와 여자의 효과 차이가 10% 이상으로 나타낸 것으로 보아 남자 보다는 여자가 우세한 것으로 판단되었으며, 비정상인 에리즈마 색소(민감도)의 비정상인 부위인 YELLOW/RED 컬러 값에서 남자1 5.2%, 남자2 5%, 여자1 9.2%, 여자2 4.5% 감소 하였음을 보였다. 이에 피실험자 모두 에리즈마인 민감성 산소치료에 따른 피부에 미치는 영향이 효과가 있는 것으로 판명되었다.

  • PDF

Deep Metric Learning을 활용한 합성곱 신경망 기반의 피부질환 분류 기술 (Skin Disease Classification Technique Based on Convolutional Neural Network Using Deep Metric Learning)

  • 김강민;김판구;전찬준
    • 스마트미디어저널
    • /
    • 제10권4호
    • /
    • pp.45-54
    • /
    • 2021
  • 피부는 외부 오염으로부터 일차적으로 몸을 보호하는 역할을 한다. 피부병이 발생하게 되면 피부의 보호 기능이 저하되므로 신속한 진단과 처치가 필요하다. 최근 인공지능의 발달로 인해 여러 분야에 기술적용을 위한 연구가 이루어지고 있으며, 피부과에서도 인공지능을 활용해 오진율을 줄여 신속한 치료를 받을 수 있는 환경을 만들기 위한 연구가 진행되고 있다. 종래 연구들의 주된 흐름은 발생 빈도가 낮은 피부질환의 진단이었지만, 본 논문에서는 사람들에게 흔히 발생할 수 있고, 개인이 명확히 판별하기 힘든 티눈과 사마귀를 합성곱 신경망을 통해 분류하는 방법을 제안한다. 사용한 데이터셋은 3개의 클래스로 이루어져 있으며, 총 2,515장의 이미지를 가지고 있다, 학습 데이터 부족과 클래스 불균형 문제가 존재한다. 모델의 학습에는 deep metric 손실 함수와 교차 손실 함수를 이용해 각각 성능을 분석하였으며, 정밀도, 재현율, F1 점수, 정확도의 측면에서 비교한 결과 deep metric 손실 함수에서 더 우수한 성능을 보였다.