References
- Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Choi, D. and Jang, J. (2021). Design and Performance Evaluation of Deep Learning-based Unmanned Medical Systems for Rehabilitation Medical Assistance, Journal of the Korea Institute of Information and Communication Engineering, 25(12), 1949-1955. https://doi.org/10.6109/JKIICE.2021.25.12.1949
- Glanville, C., Hemsworth, P. and Coleman, G. (2020). Conceptualising Dog Owner Motivations: The Pet Care Competency Model and Role of 'Duty of Care', Animal Welfare, 29(3), 271-284. https://doi.org/10.7120/09627286.29.3.271
- Hale, H., Blackwell, E., Roberts, C., Roe, E. and Mullan, S. (2023). Broadening the Veterinary Consultation: Dog Owners Want to Talk about More than Physical Health, Animals, 13(3):392, 1-19. https://doi.org/10.3390/ani13030392
- Hwang, J., Choi, C., Nam, K. and Lee, C. (2023). Analysis of Pedestrian Environment Evaluation Factors Using Urban Street View Images Based on Deep Learning, Journal of Korea Society of Industrial Information Systems, 28(6), 45-52.
- Hwang, W. K. and Lee, S. A. (2023). Korea Pet Report - Preparation and Health Care for Pets, KB Financial Group Management Research Institute, Customer and Digital.
- Jang, Y., Son, J, Jeong, Y. and Ahn, H. (2023). Pet Health and Vaccination Management Community System, Proceedings of KI IT Conference, Nov. 23, Jeju.
- Ju, H. I., Kim, Y. M. and Tae, K. S. (2018). Evaluation on the Usefulness of the U-Net Segmentation Model for Auto-Diagnosis of Lumbar Disc Herniation Using Digital Infrared Thermal Imaging, Journal of Rehabilitation Welfare Engineering & Assistive Technology, 12(4), 249-255. https://doi.org/10.21288/resko.2018.12.4.249
- Kang, D., Park, S. and Paik, J. SdBAN (2020). Salient Object Detection Using Bilateral Attention Network With Dice Coefficient Loss, IEEE Access, 8, 104357-104370. https://doi.org/10.1109/ACCESS.2020.2999627.
- Kim, B. R., Kim, H. W., Kim, J. H., Zhang, X. F. and Kim, Y. S. (2021). Segmentation of Mass in Mammography using Deep Learning, Journal of Korean Institute of Intelligent Systems, 31(1), 75-81. https://doi.org/10.5391/JKIIS.2021.31.1.075
- Kwon, G., Kim, J. H., Kim, Y. J., Lee, S. M. and Kim, K. G. (2021). Detecting Boundary of Erythema Using Deep Learning, Journal of Korea Multimedia Society, 24(11), 1492-1499. https://doi.org/10.9717/KMMS.2021.24.11.1492
- Lee, H., Lee, W. and Jeong, T. (2020). Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices, Journal of Korea Society of Industrial Information Systems, 25(6), 33-45.
- Lee, S. and Seo, Y. W. (2022). Exploratory Research on Companion Animal Products and Services - Focusing on Companion Dogs, Journal of the Korea Academia-Industrial cooperation Society, 23(9), 260-267. https://doi.org/10.5762/KAIS.2022.23.9.260
- Lee, S. M., Lee, S. Y. and Kim, N. G. (2022). Improved Pancreas Segmentation using Multiple Concatenated U-Net Model for Medical Image Systems, Journal of Korean Institute of Information Technology, 20(5), 81-87. https://doi.org/10.14801/jkiit.2022.20.5.81
- Lee, Y. H., Kim, H. J., Kim, G. B. and Kim, N. K. (2014). Deep Learning-based Feature Extraction for Medical Image Analysis, Journal of the Korean Society of Imaging Informatics in Medicine, 20, 1-12.
- Lim, S., Kim, Y. and Kim, K. G. (2020). Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning, Journal of Korea Multimedia Society, 23(3), 468-475. https://doi.org/10.9717/KMMS.2020.23.3.468
- Lim, T., Lim, K., Chung, S. and Han, S. (2021). Disease Diagnosis Research using Deep Learning based on Military Medical Data, Journal of Digital Contents Society, 22(9), 1359-1367. https://doi.org/10.9728/dcs.2021.22.9.1359
- Long, J., Shelhamer, E. and Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440.
- Malhotra, P., Gupta, S., Koundal, D., Zaguia, A. and Enbeyle, W. (2022). Deep Neural Networks for Medical Image Segmentation, Journal of Healthcare Engineering, Article ID 9580991, 1-15.
- Park, J., Cha, G. and Choi, A. (2023). A 3D ResNet-based Infant Behavior Recognition Technique Using Image Signals, Journal of Korea Society of Industrial Information Systems, 28(3), 1-10.
- Pet Skin Disease Data. Available at: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=561 (Accessed on Jun 2, 2024).
- Ronneberger, O., Fischer, P. and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention-M ICCAI 18th International Conference, 9351, 234-241. Oct. 5-9, Munich, Germany.