• Title/Summary/Keyword: 음성인식률

Search Result 549, Processing Time 0.028 seconds

A Study on Connected Digits Recognition Using the K-L Expansion (K-L 전개를 이용한 연속 숫자음 인식에 관한 연구)

  • 김주곤;오세진;황철준;김범국;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.24-31
    • /
    • 2001
  • The K-L expansion is a method for compressing dimensions of features and thus reduces computational cost in recognition process. Also This is well known that features can be extracted without much loss of information in the statistical pattern recognition. In this paper, the method that effectively applies K-L(Karhunen-Loeve) expansion to feature parameters of speech is proposed to improve the recognition accuracy of the Korean speech recognition system. The recognition performance of a novel feature parameters obtained by the proposed method(K-L coefficients) is compared with those of conventional Mel-cepstrum and regressive coefficients through speaker independent connected digits recognition experiments. Experimental results showed that average recognition rates using the K-L coefficients with regression coefficients obtained higher accuracy than conventional Mel-cepstrum with their regression coefficients.

  • PDF

An Implementation of the Vocabulary Independent Speech Recognition System Using VCCV Unit (VCCV단위를 이용한 어휘독립 음성인식 시스템의 구현)

  • 윤재선;홍광석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.160-166
    • /
    • 2002
  • In this paper, we implement a new vocabulary-independent speech recognition system that uses CV, VCCV, VC recognition unit. Since these recognition units are extracted in the trowel region of syllable, the segmentation is easy and robust. And in the case of not existing VCCV unit, the units are replaced by combining VC and CV semi-syllable model. Clustering of vowel group and applying combination rule to the substitution model in the case of not existing of VCCV model lead to 5.2% recognition performance improvement from 90.4% (Model A) to 95.6% (Model C) in the first candidate. The recognition results that is 98.8% recognition rate in the second candidate confirm the effectiveness of the proposed method.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.59-66
    • /
    • 2022
  • This research conducted a study classifying gender of speakers by analyzing feature vectors extracted from the voice data. The study provides convenience in automatically recognizing gender of customers without manual classification process when they request any service via voice such as phone call. Furthermore, it is significant that this study can analyze frequently requested services for each gender after gender classification using a learning model and offer customized recommendation services according to the analysis. Based on the voice data of males and females excluding blank spaces, the study extracts feature vectors from each data using MFCC(Mel Frequency Cepstral Coefficient) and utilizes SVM(Support Vector Machine) models to conduct machine learning. As a result of gender classification of voice data using a learning model, the gender recognition rate was 94%.

A Study on Feature Extraction using Wavelet Transform for Speech Recognition (웨이블렛 변환을 이용한 음성특징 추출에 관한 연구)

  • Joung Eui-jun;Chang Sung-wook;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.33-36
    • /
    • 2001
  • 본 논문에서는 기존의 음성인식에서 사용하는 특징벡터인 MFCC(Mel-Frequency Cepstral Cefficients)를 대신하여 웨이블렛 변환을 이용한 새로운 특징벡터를 추출하는 방법을 제안한다. 새 특징벡터로는 MRA(Multi-Resolution Analysis)를 이용하여 구성하였다. 웨이블렛 변환을 이용한 새로운 특징벡터의 추출 목적은 시간축과 주파수축에서의 더 좋은 해상도를 가지는 성질을 이용하는 것이다. 실험결과에서 웨이블렛 변환을 이용한 새로운 특징벡터를 이용한 인식이 기존의 방식보다 더 좋은 인식률을 보이고 있음을 확인하였다.

  • PDF

A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition (음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구)

  • Jang, Chun-Seo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.699-704
    • /
    • 2001
  • ABSTRACT In this paper, a new hybrid modular recurrent TDNN (time-delay neural network)-HMM (hidden Markov model) architecture for speech recognition has been studied. In TDNN, the recognition rate could be increased if the signal window is extended. To obtain this effect in the neural network, a high-level memory generated through a feedback within the first hidden layer of the neural network unit has been used. To increase the ability to deal with the temporal structure of phonemic features, the input layer of the network has been divided into multiple states in time sequence and has feature detector for each states. To expand the network from small recognition task to the full speech recognition system, modular construction method has been also used. Furthermore, the neural network and HMM are integrated by feeding output vectors from the neural network to HMM, and a new parameter smoothing method which can be applied to this hybrid system has been suggested.

  • PDF

2D Face Image Recognition and Authentication Based on Data Fusion (데이터 퓨전을 이용한 얼굴영상 인식 및 인증에 관한 연구)

  • 박성원;권지웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2001
  • Because face Images have many variations(expression, illumination, orientation of face, etc), there has been no popular method which has high recognition rate. To solve this difficulty, data fusion that fuses various information has been studied. But previous research for data fusion fused additional biological informationUingerplint, voice, del with face image. In this paper, cooperative results from several face image recognition modules are fused without using additional biological information. To fuse results from individual face image recognition modules, we use re-defined mass function based on Dempster-Shafer s fusion theory.Experimental results from fusing several face recognition modules are presented, to show that proposed fusion model has better performance than single face recognition module without using additional biological information.

  • PDF

Recognition of Overlapped Sound and Influence Analysis Based on Wideband Spectrogram and Deep Neural Networks (광역 스펙트로그램과 심층신경망에 기반한 중첩된 소리의 인식과 영향 분석)

  • Kim, Young Eon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.421-430
    • /
    • 2018
  • Many voice recognition systems use methods such as MFCC, HMM to acknowledge human voice. This recognition method is designed to analyze only a targeted sound which normally appears between a human and a device one. However, the recognition capability is limited when there is a group sound formed with diversity in wider frequency range such as dog barking and indoor sounds. The frequency of overlapped sound resides in a wide range, up to 20KHz, which is higher than a voice. This paper proposes the new recognition method which provides wider frequency range by conjugating the Wideband Sound Spectrogram and the Keras Sequential Model based on DNN. The wideband sound spectrogram is adopted to analyze and verify diverse sounds from wide frequency range as it is designed to extract features and also classify as explained. The KSM is employed for the pattern recognition using extracted features from the WSS to improve sound recognition quality. The experiment verified that the proposed WSS and KSM excellently classified the targeted sound among noisy environment; overlapped sounds such as dog barking and indoor sounds. Furthermore, the paper shows a stage by stage analyzation and comparison of the factors' influences on the recognition and its characteristics according to various levels of noise.

Postprocessing of A Speech Recognition using the Morphological Anlaysis Technique (형태소 분석 기법을 이용한 음성 인식 후처리)

  • 박미성;김미진;김계성;김성규;이문희;최재혁;이상조
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.65-77
    • /
    • 1999
  • There are two problems which will be processed to graft a continuous speech recognition results into natural language processing technique. First, the speaking's unit isn't consistent with text's spacing unit. Second, when it is to be pronounced the phonological alternation phenomena occur inside morphemes or among morphemes. In this paper, we implement the postprocessing system of a continuous speech recognition that above all, solve two problems using the eo-jeol generator and syllable recoveror and morphologically analyze the generated results and then correct the failed results through the corrector. Our system experiments with two kinds of speech corpus, i.e., a primary school text book and editorial corpus. The successful percentage of the former is 93.72%, that of the latter is 92.26%. As results of experiment, we verified that our system is stable regardless the sorts of corpus.

  • PDF

Monophone and Biphone Compuond Unit for Korean Vocabulary Speech Recognition (한국어 어휘 인식을 위한 혼합형 음성 인식 단위)

  • 이기정;이상운;홍재근
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.867-874
    • /
    • 2001
  • In this paper, considering the pronunciation characteristic of Korean, recognition units which can shorten the recognition time and reflect the coarticulation effect simultaneously are suggested. These units are composed of monophone and hipbone ones. Monophone units are applied to the vowels which represent stable characteristic. Biphones are used to the consonant which vary according to adjacent vowel. In the experiment of word recognition of PBW445 database, the compound units result in comparable recognition accuracy with 57% speed up compared with triphone units and better recognition accuracy with similar speed. In addition, we can reduce the memory size because of fewer units.

  • PDF

HMM-based Speech Recognition using FSVQ and Fuzzy Concept (FSVQ와 퍼지 개념을 이용한 HMM에 기초를 둔 음성 인식)

  • 안태옥
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.90-97
    • /
    • 2003
  • This paper proposes a speech recognition based on HMM(Hidden Markov Model) using FSVQ(First Section Vector Quantization) and fuzzy concept. In the proposed paper, we generate codebook of First Section, and then obtain multi-observation sequences by order of large propabilistic values based on fuzzy rule from the codebook of the first section. Thereafter, this observation sequences of first section from codebooks is trained and in case of recognition, a word that has the most highest probability of first section is selected as a recognized word by same concept. Train station names are selected as the target recognition vocabulary and LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments of proposed method, we experiment the other methods under same conditions and data. Through the experiment results, it is proved that the proposed method based on HMM using FSVQ and fuzzy concept is superior to tile others in recognition rate.