• Title/Summary/Keyword: 융합 이미지

Search Result 934, Processing Time 0.038 seconds

A Study of Fusion Image System and Simulation based on Mutual Information (상호정보량에 의한 이미지 융합시스템 및 시뮬레이션에 관한 연구)

  • Kim, Yonggil;Kim, Chul;Moon, Kyungil
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • The purpose of image fusion is to combine the relevant information from a set of images into a single image, where the resultant fused image will be more informative and complete than any of the input images. Image fusion techniques can improve the quality and increase the application of these data important applications of the fusion of images include medical imaging, remote sensing, and robotics. In this paper, we suggest a new method to generate a fusion image using the close relation of image features obtained through maximum entropy threshold and mutual information. This method represents a good image registration in case of using a blurring image than other image fusion methods.

Reliable Image-Text Fusion CAPTCHA to Improve User-Friendliness and Efficiency (사용자 편의성과 효율성을 증진하기 위한 신뢰도 높은 이미지-텍스트 융합 CAPTCHA)

  • Moon, Kwang-Ho;Kim, Yoo-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.27-36
    • /
    • 2010
  • In Web registration pages and online polling applications, CAPTCHA(Completely Automated Public Turing Test To Tell Computers and Human Apart) is used for distinguishing human users from automated programs. Text-based CAPTCHAs have been widely used in many popular Web sites in which distorted text is used. However, because the advanced optical character recognition techniques can recognize the distorted texts, the reliability becomes low. Image-based CAPTCHAs have been proposed to improve the reliability of the text-based CAPTCHAs. However, these systems also are known as having some drawbacks. First, some image-based CAPTCHA systems with small number of image files in their image dictionary is not so reliable since attacker can recognize images by repeated executions of machine learning programs. Second, users may feel uncomfortable since they have to try CAPTCHA tests repeatedly when they fail to input a correct keyword. Third, some image-base CAPTCHAs require high communication cost since they should send several image files for one CAPTCHA. To solve these problems of image-based CAPTCHA, this paper proposes a new CAPTCHA based on both image and text. In this system, an image and keywords are integrated into one CAPTCHA image to give user a hint for the answer keyword. The proposed CAPTCHA can help users to input easily the answer keyword with the hint in the fused image. Also, the proposed system can reduce the communication costs since it uses only a fused image file for one CAPTCHA. To improve the reliability of the image-text fusion CAPTCHA, we also propose a dynamic building method of large image dictionary from gathering huge amount of images from theinternet with filtering phase for preserving the correctness of CAPTCHA images. In this paper, we proved that the proposed image-text fusion CAPTCHA provides users more convenience and high reliability than the image-based CAPTCHA through experiments.

Comparison of Nursing Professionalism and Nurses's Image Before and After Convergence-based Nursing History and Culture Program in Nursing Students (간호역사문화 융합프로그램 수행 전·후 간호대학생의 간호전문직관과 간호사이미지 비교)

  • Yim, So-Youn;Kim, Heejeong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.85-91
    • /
    • 2017
  • The purpose of this study was conducted to identify differences of nursing professionalism and nurse's image before and after convergence-based nursing history and culture program. Study subjects were 29 juniors in B nursing college. The convergence-based nursing history and culture programs had been provided 6 times. In this study, the score of nursing professionalism and nurses' image were significantly increased after program. Among the sub-items of nursing professionalism, the self-concept of professionalism, the social awareness, the professionalism of nursing showed significant improvement, and among the sub-items of nurse's image, the role of nurse, the interpersonal relationship of nurse were statistically significant improvement after program. Nursing professionalism and Nurse's image had significant positive relationship with each other. Therefore this program could be a good extra-curriculum and it is necessary to develop more variable contents.

Multimodal Medical Image Fusion Based on Double-Layer Decomposer and Fine Structure Preservation Model (복층 분해기와 상세구조 보존모델에 기반한 다중모드 의료영상 융합)

  • Zhang, Yingmei;Lee, Hyo Jong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.185-192
    • /
    • 2022
  • Multimodal medical image fusion (MMIF) fuses two images containing different structural details generated in two different modes into a comprehensive image with saturated information, which can help doctors improve the accuracy of observation and treatment of patients' diseases. Therefore, a method based on double-layer decomposer and fine structure preservation model is proposed. Firstly, a double-layer decomposer is applied to decompose the source images into the energy layers and structure layers, which can preserve details well. Secondly, The structure layer is processed by combining the structure tensor operator (STO) and max-abs. As for the energy layers, a fine structure preservation model is proposed to guide the fusion, further improving the image quality. Finally, the fused image can be achieved by performing an addition operation between the two sub-fused images formed through the fusion rules. Experiments manifest that our method has excellent performance compared with several typical fusion methods.

Image Processing Technique to Mitigate One-Pixel Attack (단일 픽셀 공격을 완화하기 위한 이미지 처리 기법)

  • Yeon-Ji Lee;Il-Gu Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.317-320
    • /
    • 2024
  • 최근 이미지 분류, 자율 주행 등 다양한 분야에 인공지능 기술이 접목됨에 따라 인공지능 기술을 이용한 새로운 위협이 등장하고 있다. 적대적 공격 중 단일 픽셀 공격은 이미지의 픽셀 하나를 왜곡하여 인공지능의 올바른 분류를 방해하는 공격 기법이다. 본 논문은 단일 픽셀 공격을 완화하는 이미지 처리 기법을 제안한다. 실험 결과에 따르면 제안한 방법을 적용하면 이미지의 사이즈를 27×27 로 조절하였을 때 100 개의 단일 픽셀 공격 이미지 중 94 개를 복구하였으며, 이미지의 신뢰도를 68.89% 개선하였다.

A Study on the Feature Extraction using the Wavelet Transform in Satellite Remote Sensing Image (웨이브렛 변환을 이용한 원격탐사 이미지 데이터의 특징 추출에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.237-240
    • /
    • 2000
  • 본 논문에서는 원격탐사 이미지 데이터의 분석과정중의 하나인 이미지의 분류를 위해서 적용되는 다중분광 영상에서 특징 추출을 위한 효율적인 방법을 제안한다. 즉, 웨이브렛 변환을 이용하여 위성탐사 이미지 데이터의 특성을 분석하여 실제 이미지 분류에 기여도가 높은 특징을 추출하는 방법을 제안하였다. 효과적인 특징을 추출하기 위하여 이미지 데이터의 텍스쳐 특징을 이용하였다.

  • PDF

Deep Learning for Automatic Change Detection: Real-Time Image Analysis for Cherry Blossom State Classification (자동 변화 감지를 위한 딥러닝: 벚꽃 상태 분류를 위한 실시간 이미지 분석)

  • Seung-Bo Park;Min-Jun Kim;Guen-Mi Kim;Jeong-Tae Kim;Da-Ye Kim;Dong-Gyun Ham
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.493-494
    • /
    • 2023
  • 본 논문은 벚꽃나무 영상 데이터를 활용하여 벚꽃의 상태(개화, 만개, 낙화)를 실시간으로 분류하는 연구를 소개한다. 이 연구의 목적은, 실시간으로 취득되는 벚꽃나무의 영상 데이터를 사전에 학습된 CNN 기반 이미지 분류 모델을 통해 벚꽃의 상태에 따라 분류하는 것이다. 약 1,000장의 벚꽃나무 이미지를 활용하여 CNN 모델을 학습시키고, 모델이 새로운 이미지에 대해 얼마나 정확하게 벚꽃의 상태를 분류하는지를 평가하였다. 학습데이터는 훈련 데이터와 검증 데이터로 나누었으며, 개화, 만개, 낙화 등의 상태별로 폴더를 구분하여 관리하였다. 또한, ImageNet 데이터셋에서 사전 학습된 ResNet50 가중치를 사용하는 전이학습 방법을 적용하여 학습 과정을 더 효율적으로 수행하고, 모델의 성능을 향상시켰다.

  • PDF

Convergence of the Image of the Professor in Human Resources of Small and Medium Enterprises to Self Image : Mediating effect of voice image (중소기업 인적자원의 교수자이미지가 자아이미지에 미치는 융합연구 : 교수자음성이미지의 매개효과)

  • Kim, Jeoung-Yeoul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • The purpose of this study was to investigate 188 university students at Seoul National University and to present self - image data to university students for the development of small and medium human resources. The results of the study are as follows. First, there was a positive correlation between the correlation between the image of the trainee perceived by university students and the self - image, the correlation between the image of the trainee perceived by the university students and the voice image, and the correlation between the voice image and the self - image perceived by university students. Second, as a result of examining whether or not the voice image is mediated in the relationship between the image of the talent and the self - image perceived by university students, Therefore, it is confirmed that as the image level of the talent related to the human resource of SMEs increases, the level of the voice image increases and the self image level also improves accordingly.

A Novel Multi-focus Image Fusion Scheme using Nested Genetic Algorithms with "Gifted Genes" (재능 유전인자를 갖는 네스티드 유전자 알고리듬을 이용한 새로운 다중 초점 이미지 융합 기법)

  • Park, Dae-Chul;Atole, Ronnel R.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.75-87
    • /
    • 2009
  • We propose in this paper a novel approach to image fusion in which the fusion rule is guided by optimizing an image clarity function. A Genetic Algorithm is used to stochastically select, comparative to the clarity function, the optimum block from among the source images. A novel nested Genetic Algorithm with gifted individuals found through bombardment of genes by the mutation operator is designed and implemented. Convergence of the algorithm is analytically and empirically examined and statistically compared (MANOVA) with the canonical GA using 3 test functions commonly used in the GA literature. The resulting GA is invariant to parameters and population size, and a minimal size of 20 individuals is found to be sufficient in the tests. In the fusion application, each individual in the population is a finite sequence of discrete values that represent input blocks. Performance of the proposed technique applied to image fusion experiments, is characterized in terms of Mutual Information (MI) as the output quality measure. The method is tested with C=2 input images. The results of the proposed scheme indicate a practical and attractive alternative to current multi-focus image fusion techniques.

  • PDF

Cascade Fusion-Based Multi-Scale Enhancement of Thermal Image (캐스케이드 융합 기반 다중 스케일 열화상 향상 기법)

  • Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.301-307
    • /
    • 2024
  • This study introduces a novel cascade fusion architecture aimed at enhancing thermal images across various scale conditions. The processing of thermal images at multiple scales has been challenging due to the limitations of existing methods that are designed for specific scales. To overcome these limitations, this paper proposes a unified framework that utilizes cascade feature fusion to effectively learn multi-scale representations. Confidence maps from different image scales are fused in a cascaded manner, enabling scale-invariant learning. The architecture comprises end-to-end trained convolutional neural networks to enhance image quality by reinforcing mutual scale dependencies. Experimental results indicate that the proposed technique outperforms existing methods in multi-scale thermal image enhancement. Performance evaluation results are provided, demonstrating consistent improvements in image quality metrics. The cascade fusion design facilitates robust generalization across scales and efficient learning of cross-scale representations.