• Title/Summary/Keyword: 웨이블릿 계수축소

Search Result 12, Processing Time 0.02 seconds

Linear Scratch Detection and Removal Technique for Old Film Sequences Using Wavelet Shrinkage and Interpolation (고전 영화 복원을 위한 웨이블릿 계수축소와 보간법을 이용한 선형 스크래치 검출 및 제거 기술)

  • Kang, Won-Seok;Lee, Eun-Sung;Kim, Sang-Jin;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents a novel scratch detection and removal approach for old film images in wavelet-domain. Various scratch detection and removal algorithms have been proposed for past decades. However, accurate scratch detection and removal with a moderate amount of computing effort is still a problem because of trade off between the quality of the film and computational load. For overcoming this problem, we first decompose an input image using a 3-level wavelet transform, and then remove the scratch by shrinking wavelet coefficients using linear interpolation. Experimental results show that the proposed algorithm can efficiently detect and remove the scratch in damaged films, and also be incorporated into old film restoration systems.

Space-Frequency Adaptive Image Restoration Using Vaguelette-Wavelet Decomposition (공간-주파수 적응적 영상복원을 위한 Vaguelette-Wavelet분석 기술)

  • Jun, Sin-Young;Lee, Eun-Sung;Kim, Sang-Jin;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.112-122
    • /
    • 2009
  • In this paper, we present a novel space-frequency adaptive image restoration approach using vaguelette-wavelet decomposition (VWD). The proposed algorithm classifies a degraded image into flat and edge regions by using spatial information of the wavelet coefficient. For reducing the noise we perform an adaptive wavelet shrinkage process. At edge region candidates, we adopt entropy approach for estimating the noise and remove it by using relative between sub-bands. After shrinking wavelet coefficients process, we restore the degraded image using the VWD. The proposed algorithm can reduce the noise without affecting the sharpness details. Based on the experimental results, the proposed algorithm efficiently proved to be able to restore the degraded image while preserving details.

Denoising Images by Soft-Threshold Technique Using the Monotonic Transform and the Noise Power of Wavelet Subbands (단조변환 및 웨이블릿 서브밴드 잡음전력을 이용한 Soft-Threshold 기법의 영상 잡음제거)

  • Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.141-147
    • /
    • 2014
  • The wavelet shrinkage is a technique that reduces the wavelet coefficients to minimize the MSE(Mean Square Error) between the signal and the noisy signal by making use of the threshold determined by the variance of the wavelet coefficients. In this paper, by using the monotonic transform and the power of wavelet subbands, new thresholds applicable to the high and the low frequency wavelet bands are proposed, and the thresholds are applied to the ST(soft-threshold) technique to denoise on image signals with additive Gaussian noise. And the results of PSNRs are compared with the results obtained by the VisuShrink technique and those of [15]. The results shows the validity of this technique.

Feature extraction based on DWT and GA for Gesture Recognition of EPIC Sensor Signals (EPIC 센서 신호의 제스처 인식을 위한 이산 웨이블릿 변환과 유전자 알고리즘 기반 특징 추출)

  • Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.612-615
    • /
    • 2016
  • 본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.

Image Signal Denoising by the Soft-Threshold Technique Using Coefficient Normalization in Multiwavelet Transform Domain (멀티웨이블릿 변환영역에서 계수정규화를 이용한 Soft-Threshold 기법의 영상신호 잡음제거)

  • Kim, Jae-Hwan;Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.255-265
    • /
    • 2007
  • In case of wavelet coefficients have correlation, in image signal denoising using wavelet shrinkage denoising method, the denoising effect for the image signal is reduced when the wavelet shrinkage denoising method is used. The coefficients of multiwavelet transform have correlation by pre-filters. To solve the degradation problem in multiwavelet transform, V Sterela suggested a new pre-filter for the Universal threshold or weighting factors to the threshold. In this paper, to improve the denoising effect in the multiwavelet transform, the coefficient normalizing method that the coefficient are divided by estimated noise deviation is adopted to the transformed multiwavelet coefficients in the course of wavelet shrinkage technique. And the thresholds of universal, SURE and GCV are estimated using normalized coefficients and tried to denoise by the wavelet shrinkage technique. We compared PSNRs of denoised images for each thresholds and confirmed the efficiency of the proposed method.

  • PDF

Optimal wavelet coefficient selection for diagnosis of arrhythmia using genetic algorithm and multiple regressions (GA와 중회귀분석을 이용한 부정맥 진단의 최적 웨이블릿 계수의 선택)

  • Chong, Kab-Sung;Kim, Tae-Seon;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2534-2536
    • /
    • 2004
  • 본 논문은 유전알고리즘을 이용하여 부정맥 진단의 최적화된 입력을 구성하는 방법을 제시한다. 심전도 신호의 특징을 추출하기 위해 웨이블릿 변환이 널리 사용되고 있지만, 추출된 특징들의 선택과 최적화의 문제에 대해서는 명쾌한 해결책을 제시하지 못하고 있다. 심전도 신호는 연속 웨이블릿 변환을 이용해 5레벨로 분해되었으며, 각 서브밴드에서 추출된 계수들은 부정맥 진단을 위한 특징으로 쓰이게 된다. 웨이블릿 변환을 통해 추출된 특징들(feature)은 유전자 알고리즘과 중회귀 분석을 동하여 부정맥 진단을 위한 최적화된 특징조합이 결정되었다. 본 연구를 통해 특정레벨의 어떤 계수가 부정맥 진단에 크게 영향을 미치는지 판단할 수 있었으며 입력의 차원감소는 연산시간의 축소를 가져왔고 분류정확도를 향상시켜 분류기의 성능을 증대시켰다.

  • PDF

A Study of Image Coding Technique Using Adaptive Wavelet Transform (적응적 웨이블릿 변환을 사용한 영상 코딩 기법에 관한 연구)

  • 김혜경;이옥경;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.386-388
    • /
    • 1999
  • 본 논문은 이미지 데이터의 효율적인 코딩에 대한 새로운 방법을 나타낸다. 웨이블릿 변환을 기초로 한, 알고리즘은 서브밴드 간의 남아 있는 상관관계를 이용한다. 웨이블릿 계수들에 대한 성공적인 대략값은 계층적인 심볼 스트림을 초래하고, 그것은 PSD(의미있는 자손에 대한 예언)과 함께 매우 높게 압축된다. 코딩 알고리즘은 이미지 컨텐트에 대한 높은 적응성에 의해 그 자체를 구별한다. 초래하는 비트스트림은 그것들의 중요도에 대한 순서에 있어서 모든 이미지 정보를 구성한다. 그러므로 그것은 위험한 디코딩 과정 없이 어떤 지점에서 절단하는 것이 가능하다. 이러한 내장된 비트스트림의 이점은 공간적인 규모성(scalability)과 왜곡율이다. 좀 더 나은 향상은 웨이블릿 패킷으로 알려진 새로운 적응적인 웨이블릿 변환을 사용하여 획득된다. 초기의 기법들과 적합하지 않은 현재의 서브밴드에 대한 관련성있는 통계적인 특성들(특히 상관관계)은 처음으로 분석된다. 그것들에 의존하는, 서브밴드가 분해 유무에 관계없이 분해 결정이 만들어진다. 이러한 결과는 최고의 기본적인 선택이 아니고 최적에 가까운 분해 구조를 초래한다. 본 논문에서 제안한 모델의 가장 주요한 이점은 계산적인 비용의 축소이다.

  • PDF

Noise Reduction of Digital Image Using Wavelet Coefficient (웨이블릿 계수를 이용한 디지털영상에서의 잡음제거)

  • 남현주;최승권;신승수;조용환
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.376-382
    • /
    • 2003
  • Recently, there have been many types of wavelet transformations proposed to remove the noise from an signal and image data By using feature of seperating the noise from the original image the Wavelet transformations can retain the edges of the images The wavelet analysis is complete when the basis function is coded into the wavelet This Thesis describes a method of using wavelet transformation to remove the noise from an image signal. Although the wavelet transformation proposed by Donoho and Johnstone works, it does not reliably remove all the noise from the images. So this thesis propose an algorithm that selected Wavelet Shrinkgae and threshold according to the features of bands and amplitude of noise.

  • PDF

Numerical Homogenization in Concrete Materials Using Multi-Resolution Analysis (다중해상도해석을 이용한 콘크리트 재료의 수치적 동질화)

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.939-946
    • /
    • 2005
  • The stiffness properties of heterogeneous concrete materials and their degradation were investigated at different-levels of observations with aids of the opportunities and limitations of multi-resolution wavelet analysis. The successive Haw transformations lead to a recursive separation of the stiffness properties and the response into coarse-and fine-scale features. In the limit, this recursive process results in a homogenization parameter which is an average measure of stiffness and strain energy capacity at the coarse scale. The basic concept of multi-resolution analysis is illustrated with one and two-dimensional model problems of a two-phase particulate composite representative of the morphology of concrete materials. The computational studies include the meso-structural features of concrete in the form of a hi-material system of aggregate particles which are immersed in a hardened cement paste taking due to account of the mismatch of the two elastic constituents.

Directionally Adaptive Aliasing and Noise Removal Using Dictionary Learning and Space-Frequency Analysis (사전 학습과 공간-주파수 분석을 사용한 방향 적응적 에일리어싱 및 잡음 제거)

  • Chae, Eunjung;Lee, Eunsung;Cheong, Hejin;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.87-96
    • /
    • 2014
  • In this paper, we propose a directionally adaptive aliasing and noise removal using dictionary learning based on space-frequency analysis. The proposed aliasing and noise removal algorithm consists of two modules; i) aliasing and noise detection using dictionary learning and analysis of frequency characteristics from the combined wavelet-Fourier transform and ii) aliasing removal with suppressing noise based on the directional shrinkage in the detected regions. The proposed method can preserve the high-frequency details because aliasing and noise region is detected. Experimental results show that the proposed algorithm can efficiently reduce aliasing and noise while minimizing losses of high-frequency details and generation of artifacts comparing with the conventional methods. The proposed algorithm is suitable for various applications such as image resampling, super-resolution image, and robot vision.