Abstract
In this paper, we present a novel space-frequency adaptive image restoration approach using vaguelette-wavelet decomposition (VWD). The proposed algorithm classifies a degraded image into flat and edge regions by using spatial information of the wavelet coefficient. For reducing the noise we perform an adaptive wavelet shrinkage process. At edge region candidates, we adopt entropy approach for estimating the noise and remove it by using relative between sub-bands. After shrinking wavelet coefficients process, we restore the degraded image using the VWD. The proposed algorithm can reduce the noise without affecting the sharpness details. Based on the experimental results, the proposed algorithm efficiently proved to be able to restore the degraded image while preserving details.
본 논문에서는 베이글릿-웨이블릿 분석(vaguelette-wavelet decomposition; VWD)을 이용한 공간-주파수 적응적 영상복원 알고리듬을 제안한다. 제안한 알고리듬은 웨이블릿 계수의 공간적 정보를 이용하여 평탄 영역과 에지 영역을 분리하고, 적응적 웨이블릿 계수축소(wavelet shrinkage)를 통해 잡음 성분을 억제한다. 뿐만 아니라, 에지 영역에서는 엔트로피(entropy)를 적용 하여 웨이블릿 부대역의 잡음 성분을 추정하고, 부대역 간의 상관관계를 이용하여 잡음 성분을 억제한다. 이렇게 억제된 웨이블릿 계수의 베이글릿 역변환을 통해 영상을 복원 할 수 있다. 제안한 알고리듬에 사용되는 베이글릿 함수는 잡음을 추정 및 억제 할 수 있을 뿐만 아니라 세밀한 에지 성분의 보존이 가능하도록 변형을 한다. 실험결과에서는 제안한 알고리듬이 잡음에 강건하고, 세밀한 에지 성분을 보전하면서 효과적으로 열화된 영상을 복원할 수 있음을 보여준다.