Space-Frequency Adaptive Image Restoration Using Vaguelette-Wavelet Decomposition

공간-주파수 적응적 영상복원을 위한 Vaguelette-Wavelet분석 기술

  • Jun, Sin-Young (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Lee, Eun-Sung (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Kim, Sang-Jin (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Paik, Joon-Ki (Dept. of Image Engineering, Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University)
  • 전신영 (중앙대학교 첨단영상대학원) ;
  • 이은성 (중앙대학교 첨단영상대학원) ;
  • 김상진 (중앙대학교 첨단영상대학원) ;
  • 백준기 (중앙대학교 첨단영상대학원)
  • Published : 2009.11.25

Abstract

In this paper, we present a novel space-frequency adaptive image restoration approach using vaguelette-wavelet decomposition (VWD). The proposed algorithm classifies a degraded image into flat and edge regions by using spatial information of the wavelet coefficient. For reducing the noise we perform an adaptive wavelet shrinkage process. At edge region candidates, we adopt entropy approach for estimating the noise and remove it by using relative between sub-bands. After shrinking wavelet coefficients process, we restore the degraded image using the VWD. The proposed algorithm can reduce the noise without affecting the sharpness details. Based on the experimental results, the proposed algorithm efficiently proved to be able to restore the degraded image while preserving details.

본 논문에서는 베이글릿-웨이블릿 분석(vaguelette-wavelet decomposition; VWD)을 이용한 공간-주파수 적응적 영상복원 알고리듬을 제안한다. 제안한 알고리듬은 웨이블릿 계수의 공간적 정보를 이용하여 평탄 영역과 에지 영역을 분리하고, 적응적 웨이블릿 계수축소(wavelet shrinkage)를 통해 잡음 성분을 억제한다. 뿐만 아니라, 에지 영역에서는 엔트로피(entropy)를 적용 하여 웨이블릿 부대역의 잡음 성분을 추정하고, 부대역 간의 상관관계를 이용하여 잡음 성분을 억제한다. 이렇게 억제된 웨이블릿 계수의 베이글릿 역변환을 통해 영상을 복원 할 수 있다. 제안한 알고리듬에 사용되는 베이글릿 함수는 잡음을 추정 및 억제 할 수 있을 뿐만 아니라 세밀한 에지 성분의 보존이 가능하도록 변형을 한다. 실험결과에서는 제안한 알고리듬이 잡음에 강건하고, 세밀한 에지 성분을 보전하면서 효과적으로 열화된 영상을 복원할 수 있음을 보여준다.

Keywords

References

  1. J. Paik, "New application are(839)as of image restoration: a perspective," Proc. Asia-Pacific Conference on Communication, vol. 2, pp. 775 – 778, August, 1993
  2. M. Banham and A. Katsaggelos, "Digital image restoration," IEEE Signal Processing Magazine, vol. 14, no. 2, pp. 24-41, March 1997 https://doi.org/10.1109/79.581363
  3. R. Gonzalez and R. Woods, Digital image processing, 2nd ed., Prentice-Hall, 2001
  4. M. Banham, N. Galatsanos, H. Gonzalez, and A. Katsaggelos," Multichannel restoration of single channel images using a wavelet-based subband decomposition," IEEE Trans. Image Processing, vol. 3, pp.821-833, November 1994 https://doi.org/10.1109/83.336250
  5. A. Jain, Fundamental of Digital Image Processing, Prentice-Hall, 1989
  6. I. Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathmatics, 1992
  7. S. Mallat, A Wavelet Tour of Signal Processing, New York: Academic Press, 1998.
  8. E. Balster, Y. Zheng, and R. Ewing, "Feature-based wavelet shrinkage algorithm for image denoising," IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2024-2039, December 2005 https://doi.org/10.1109/TIP.2005.859385
  9. D. Donoho, "Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition," Applied Computational and Harmonic Analysis, vol. 2, pp. 101-26, 1995 https://doi.org/10.1006/acha.1995.1008
  10. F. Abramovich and B. Silverman, "Wavelet decomposition approaches to statistical inverse problems," Biometrika, vol. 85, no. 1, pp. 115-129, 1998 https://doi.org/10.1093/biomet/85.1.115
  11. 백준기,"첨단 영상 미디어 서비스와 영상복원 기술," 대한전자공학회, 전자공학회지 제 23권 제6호, pp. 636 – 647, 1996년 6월
  12. H. Zheng, C. Xiaoqing, and L. Guoming, "Wavelet entropy measure definition and its application for transmission line fault detection and identification," International Conference on Power System Technology 2006, pp. 1 – 6, October 2006
  13. R. Neelamani, H. Choi, and R. Baraniuk, "ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems," IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 418-433, February, 2004 https://doi.org/10.1109/TSP.2003.821103