• Title/Summary/Keyword: 와류 요소

Search Result 64, Processing Time 0.036 seconds

A Study on the finite Element Analysis of Eddy Current Distributions using Current Vector Potential (전류 벡터 포텐셜을 이용한 와류분포의 유한요소 해석에 관한 연구)

  • 임달호;김민수;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.839-846
    • /
    • 1988
  • If we use the 2-dimensional analyzing method with the magnetic vector potential for the analysis of eddy current distribution in electric machinery, we can obtain the magnitude of eddy current but can't have the characteristic of eddy current distribution. For the settlement of this problem, we have induced the governing equation with the current vector potential and attemptted 2-dimensional analysis of eddy current distribution by finite element method. And the time domain weighted residual method is used in treatment of time differential term and we have developed the algorithm by it. And then, we analyze eddy current distributions of analytic model and aluminium disk in singlephase watt hour meter. Consequently we have verified the propriety and utility of above mentioned method.

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation (Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석)

  • Lee, Chan-Hui;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

3-Dimensional Numerical Simulation of Floating Device for Vortex Mitigation in Sump (흡수정 와류 저감을 위한 부유식 장치의 성능 3차원 수치모의)

  • Kim, Hyung-Jun;Rhee, Dong Sop;Yoon, Kwang Seok;Park, Sung Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.325-325
    • /
    • 2017
  • 빗물펌프장은 도시지역 저지대의 우수를 강제로 배출하여 제내지의 치수안전도를 향상시키기 위한 방재시설이다. 변화하는 기상조건에 맞추어 침수취약지역의 치수안전도를 유지 또는 향상시키기 위해서는 빗물펌프장 설계시 목표한 치수성능을 지속적으로 구현할 필요가 있다. 그러나, 펌프시설의 고속운전, 변화하는 펌프운영조건 등의 영향으로 펌프의 성능은 지속적으로 저하된다. 이와 같은 펌프성능의 주요원인은 펌프운영시 발생하는 공기연행이 주요 원인중 하나이다. 흡수정 설계단계에서는 와류에 의한 공기연행을 제어하기 위하여 흡입관경, 흡수정 벽면으로부터의 이격거리 등의 설계요소를 반영하고 있지만, 도심지역의 제한적인 공간특성으로 인하여 설계기준치를 만족하지 못하는 경우가 발생하게 된다. 설계시 흡수정 내에 형성되는 와류를 억제하기 위하여 흡수정의 벽면 모서리를 완만하게 시공하거나, 흡수정 내에 날개벽 또는 별도의 시설을 설치하는 방법을 채택하고 있다. 그러나, 이와 같은 와류방지시설은 고정된 설계조건에 대하여 성능구현이 가능하지만, 홍수시 흡수정 내의 흐름은 하천의 수위 및 유입되는 유량에 의하여 시시각각 변화하게 된다. 이와 같은 운영조건의 변화에 대응할 수 있는 방법을 제시하기 위하여 본 연구에서는 수면에 부유식 와류방지장치를 설치하고 이에 대한 성능을 3차원 수치모의를 통하여 재현한 후 정량적으로 분석하였다. 부유식 와류방지장치에 대한 성능검토결과, 다양한 운영조건에서도 부유식 와류방지장치가 유효한 와류저감효과를 구현하고 있는 것을 확인하였다.

  • PDF

Electroconvective Instability on Undulated Ion-selective Surface (파상형 이온 선택 표면상의 전기와류 불안정성)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.735-742
    • /
    • 2019
  • In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.

The Calculation of Propeller Thrust using Semi-infinite Helical Vortices and a Wind tunnel Test (나선와류를 이용한 프로펠러 추력계산과 풍동 시험 연구)

  • Park, Young-Min;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.816-822
    • /
    • 2011
  • In this study, a program has been coded to evaluate propeller thrust rapidly following the effects of propeller shapes and the environmental facts. At this time, Semi-infinite Helical Vortices model is used to predict the induction factor which is introduced by Kawada. This program is based on Wrench's Propeller lifting line theory, and it can predict aerodynamic coefficients such as thrust, power, and efficiency. First of all, this program is compared with test results of NACA reports to verify of the reliability. Secondly, subsonic wind tunnel test has been performed following variations of propeller's rpm and inflow velocities.

Characteristic Analysis of a High Speed Permanent Magnet Motor by using Equivalent Circuit Method and Finite Element Method (등가회로법과 유한요소법에 의한 고속 영구자석 전동기의 특성해석)

  • Jeong, Y.H.;Lee, K.C.;Koo, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1019-1020
    • /
    • 2007
  • 본 논문에서는 철손과 와류손이 고려된 등가회로를 이용하여 고속 영구자석 전동기의 정밀한 특성분석을 수행하였는데, 철손과 와류손으로 구성된 자기적인 손실을 등가저항으로 취급하고 이들이 포함된 등가회로를 이용하여 등가 손실저항과 정격 전류를 수치해석으로 계산하는 방법을 제안하였다.

  • PDF

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

A Study on the Combustion Stability Evaluation of Double Swirl Coaxial Injector (이중 와류 동축형 분사기의 연소안정성 평가에 관한 연구)

  • ;;;Kim, Hong-Jip;Choe, Hwan-Seok;Lee, Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.41-47
    • /
    • 2006
  • A liquid rocket thrust chamber should have a high confidence in its combustion performance and combustion stability. Expecially, the injector of which function is spraying and mixing propellants plays an important role in getting the confidence. This study was carried out to evaluate combustion stability of a double swirl coaxial injector by using the model similarity method. Besides, in case of a baffle which was used to improve combustion stability, the length and gap effects of the baffle were investigated.

Study on the Model Similarity Method for evaluating the Combustion Stability of Coaxial Swirl Injector (동축 와류 분사기의 연소안정성 평가를 위한 모델 상사 기법 연구)

  • Lee Kwang-Jin;Seo Seong-Hyeon;Kim Hong-Jip;Ahn Kyu-Bok;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.257-263
    • /
    • 2006
  • Liquid rocket combustion chamber must have high confidence in combustion performance and combustion stability. Expecially, an injector playing a part in the mixing of propellants is an important parameter to determine it. The present study was carried out in the viewpoint of combustion stability to evaluate the combustion stability characteristics of Coaxial Swirl Injector, using a model similarity method. Besides, in case of baffle applied to improve combustion stability, the effectiveness getting from changing the axial length and the gap of baffle was investigated.

  • PDF