• Title/Summary/Keyword: 엽록소 함량 변화

Search Result 294, Processing Time 0.023 seconds

Assessment of Roof-rainwater Utilization System and Drought Resistance of Ground Cover Plants (지피식물을 이용한 우수저장형 옥상녹화 시스템 및 식물 내건성 평가)

  • Kang, Tai-Ho;Zhao, Hong-Xia
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • In order to evaluate 2 extensive green roof systems(Sedum Box Roof System and Roof-rainwater Utilization System) for urban greening and select ground-cover plants, which can adapt well to the drought tolerance in an extensive green roof system on 12 species. This study was carried out in order to suggest an experimental base in assessment of the Green Roof-rainwater Utilization System and selecting the drought resistance of plants. Adopting the natural drought method, this paper studies the drought resistance of 12 kinds of ground cover plants. The drought-resistance of ground cover plants subjected to dry processing time were evaluated using relative water content on leaves, relative electric conductivity and chlorophyll content in 12 kinds of plants, and the relation between soil water content under drought stress. Drought resistance of the plants were subject to rooftop drought resistance treatments. The result showed that with the increase of stress time, the relative water content and chlorophyll content on leaves were in a downward trend while the relative electric conductivity was in an upward trend. Among the 12 species of ground cover plants, excluding Pulsatilla koreana, Ainsliaea acerifolia was selected for rooftop plants because they showed resistance to drought strongly and took adaptive ability. These results showed that drought tolerance of plants in Roof-rainwater Utilization System were stronger than the Sedum Box Roof System. Therefore, the Roof-rainwater Utilization System is good for plants. It helps them adapt well to the drought tolerance in rooftops and can be used for urban greening.

Physiological Characteristics and Morphological Changes of Chinese Cabbage (Brassica rapa L. ssp. campestris) to Potassium Toxicity (칼륨 독성에 의한 배추의 생리적 특성과 형태적 변화)

  • Lee, Taek-Jong;Luitel, Binod Prasad;Heo, Kweon;Choi, Bong-Jun;Kang, Won-Hee
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.311-319
    • /
    • 2011
  • Overusing chemical fertilizers involves potassium accumulation in the soil, which can become a toxicity problem in agriculture. This study was conducted to investigate the effect of potassium (K) treatment on growth, physiological characteristics, and morphological changes using Chinese cabbage (Brassica rapa L. ssp. campestris). With high (600 mM) K treatment, the plant growth traits of leaf length, leaf area, and fresh and dry weight of shoots and roots decreased, whereas chlorophyll content increased. As the concentration of K increasing, total N, P, and K increased in leaves, but concentrations of Ca, Mg, and Na decreased. However, Mn, Fe and Zn contents were highest in 100 mM K treatment. Chlorophyll a, b, and carotenoids increased with increasing K concentration. Maximum photochemical efficiency ($F_v/F_m$) was not significant in the all treatments, whereas $CO_2$ assimilation decreased with increasing K level due to stomatal degradation. Total free amino acids increased with the 10 and 100 mM K but decreased at 600 mM K treatments. Therefore, the growth and physiological characteristics of Chinese cabbage ascertained that tolerance up to 100 mM K when grown with nutrient solution in pot culture.

Growth Responses of 4 Species to NaCl Concentration in Artificial Soil (NaCl 농도별 토양 처리에 대한 4수종의 생장 반응)

  • Park, Woo-Jin;Seo, Byung-Soo;Park, Chong-Min;Choi, Chung-Ho;Choi, Soo-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.735-743
    • /
    • 2010
  • In order to inspect growth responses of Fraxinus rhynchophylla Hance, Koelreuteria paniculata Laxmann, Quercus acutissima Carruther and Ulmus parvifolia Jacquin to NaCl treatment, NaCl solution was treated for four months with 0, 25, 50, 100 and 200 mM concentrations, then survival rate, change of relative growth rate, weight, dry weight and pigment content of leaf were investigated. According to NaCl treatment, pH and EC (electrical conductivity) of soil increased, and growth rates of four tree species fell apparently as treatment time became longer. U. parvifolia had the highest survival rate with 15% in the 200mM treatment, and the other three species withered in the treatment. Relative growth rate, weight and dry weight decreased when NaCl treatment time grew longer. The total chlorophyll declined after it rose to 60 days, and the total chlorophyll and carotenoid of the all species according to NaCl treatment did not change very much. With the result from anlayzing growth responses of four tree species to oxidative stress which occurs during NaCl treatment, U. parvifolia has the highest tolerance, followed by K. paniculata, F. rhynchophylla and Q. acutissima.

Studies on the Preventive Measures of Vegetable Crops to Gases -1. Effect of ammonia gas on radish, chinese cabbage, tomato, and cucumber (채소원예작물(菜蔬園藝作物)에 대(對)한 가스피해(被害) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -1. 무우, 배추, 토마토, 오이에 대한 Ammonia 가스의 영향(影響))

  • Kim, Bok-Yong;Cho, Jae-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.139-145
    • /
    • 1987
  • This study was carried out to find out the effects of ammonia gas on the leaf destruction of vegetable crops, and nitrogen contents in their leaves. Radish, chinese cabbage, tomato and cucumber were fumigated with 0.05, 0.1, $0.2mg/{\ell}$ ammonia gas for 2 hrs under different exposure time, light and soil water condition at vegetative growth stage. The results obtained were as follows. The crop damages measured by percentage of leaf destruction were more severe at the night time fumigation than treatment during the day, at the full sun condition than the shading, and at the higher soil water contents. Cucumber plant showed higher resistance to ammonia gas than tomato plant. The chrolophyll contents in leaves of each crops were remarkably decreased by increment of ammonia concentration from $0.05mg/{\ell}$ to $0.2mg/{\ell}$, but the N content in them was increased.

  • PDF

Chlorophyll, Mineral Contents and SOD-like Activities of Leeks Harvested at Different Times (부추의 수확시기에 따른 클로로필, 무기질 및 superoxide dismutase 유사활성의 변화)

  • 곽연주;전희정;김정상
    • Korean journal of food and cookery science
    • /
    • v.14 no.5
    • /
    • pp.513-515
    • /
    • 1998
  • This study was performed to determine the contents of mineral and bioactive components in leek samples harvested at different times. Analysis of chlorophyll contents of leek harvested at different times showed the latest one (5th sample) had the highest level among samples. The leek harvested at the earliest (1st) had the highest amount of Fe, f and Cu while 5th sample was highest in Ca, Mn, P, Zn and Na contents. Lead (Pb) was not detected in any leek sample harvested at different times. SOD (superoxide dismutase)-like activity was the highest in leek harvested at the earliest.

  • PDF

Growth and Physiological Responses of Pinus strobus to CaCl2 (염화칼슘에 의한 스트로브잣나무의 생장 및 생리반응)

  • Je, Sun-Mi;Kim, Sun-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The present study aimed to investigate the effect of calcium chloride($CaCl_2$) on the growth and physiological responses of Pinus strobus and the variables that are sensitive to $CaCl_2$. Thus, changes in the visible damage, growth of root collar diameter, plant water content, chlorophyll content and composition, maximum PS II photochemical efficiency, and electron transport rate of P. strobus was analyzed in relation to treatment witih $CaCl_2$. A $CaCl_2$ solution(0.5, 1.0 and 3.0%) was applied in the root zone before leaf unfolding. Leaf browning, defoliation, and drying were observed with $CaCl_2$ application and this pattern was aggravated as the $CaCl_2$ concentration increased and the treatment period became longer. The decrease of growth in root collar diameter and height and leaf water content were observed at $CaCl_2$ 1.0% and 3.0%. The total chlorophyll content indicated that photopigment, PS II photochemical efficiency and electron transport rate significantly decreased at $CaCl_2$ 3.0%. In conclusion, $CaCl_2$ affected leaf water content and led to a decrease of capability in light harvesting and photochemical responses. Also, as a result of the correlation between calcium chloride concentration and growth and physiological response parameters, it was found that the leaf moisture content and the ratio of chlorophyll a and b reflect the damage level of calcium chloride sensitively because their coefficient of determinations were relatively high.

Excessive Water Tolerance Test by Waterlogging Treatments on the Indian Corn Accessions (침수처리를 통한 인도 수집 옥수수의 내습성 검정)

  • Jeon, Min Jae;Park, Min Jeong;Hur, Suel Hye;Min, Byung Whan
    • Journal of agriculture & life science
    • /
    • v.51 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • This research was carried out to excessive water tolerance test among corn accessions collected from India to breed corn cultivars targeting India market. The corn accessions were 20 Inbred lines and cultivars from India as well as Korean cultivars Gwangpyungok and Chaloksusu. Excessive water tolerance test was done in the green house by immerging the pots containing corn seedlings for two weeks. Then, the plant heights were measured to compare the control plants that were not grown in the immerging state. The results showed that seven accessions of high tolerance in flooding; H2(92.9%), H18(88.8%), CN114A(98.1%), CN351A(94.3%), Super900M(95.3%), P3394(98.8%), 31N27(96.7%) in which the percent is comparison to the control plants. Whereas nine accessions showed high damage by immerging; H1(78.9%), H8(73.4%), H10(77.1%), H19(79.0%), H26(74.1%), H31(75.7%), H34(77.5%), H36(77.4%), H40(74.6%). However, the reduction on the contents of chlorophyll a, chlorophyll b, carotenoids in leaf revealed contrast results to the flooding tolerance. Particularly, H36($7.249{\mu}g{\cdot}mg^{-1}$) and H40($7.642{\mu}g{\cdot}mg^{-1}$) showed rapid reduction in the chlorophyll a content during the flooding treatment. Whereas two Indian commercial varieties 37N27($0.630{\mu}g{\cdot}mg^{-1}$) and P3394($1.208{\mu}g{\cdot}mg^{-1}$) showed slight reduction. The reduction of chlorophyll a and carotenoid contents was positively correlated during the excessive water stress.

The Growth Effects of Creeping Bentgrass by Application of Liquid Fertilizer with Saponin and Liquid Fertilizer with Amino Acid (사포닌과 아미노산 함유비료의 살포가 크리핑벤트그래스의 생육에 미치는 효과)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lee, Jae-Pil;Hwang, Young-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2012
  • This study was conducted to evaluate to the effect of liquid fertilizer with saponin (SLF) and liquid fertilizer with amino acid (ALF)on the growth of creeping bentgrass. In creeping bentgrass, turf color index, chlorophyll index, dry weight and shoot number were measured. It was hardly affected by SLF and ALF applications in investigation of chemical properties of the soil. By applying SLF and ALF, turf color index and chlorophyll index in 2SLF and 2ALF were increased more than CF, and shoot number and root length in 2SLF, ALF and 2ALF were higher than CF. In correlation coefficient among growth factors of creeping bentgrass, turf quality was significantly different in root length, shoot number, dry weight, and content of N and K in turf tissue (P<0.05), N content of tissue was significantly in root length, shoot number and dry weight (P<0.05), and K content was significantly in shoot number and dry weight (P<0.05). These results suggested that application of functional liquid fertilizers such as SLF and ALF was expected to replace compound fertilizer in turf management and that applied SLF and ALF was stimulated the uptake of N and K into turf so that turf qualities were improved by enhancing growth shoot and root of turf.

Changes on Photosynthesis and SOD Activity in Platanus orientalis and Liriodendron tulipifera According to Ozone Exposing Period (오존 노출 시간에 따른 버즘나무와 백합나무의 광합성과 SOD 활성 변화)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2005
  • This study was conducted to compare the physiological and biochemical responses of P. orientalis and L. tulipifera in response to ozone. One-year-old seedlings of P. orientalis and L. tulipifera were exposed to 100 ppb ozone concentration for 2, 4, or 8 hr/day for 1 week. Photosynthesis, stomatal conductance and ozone uptake rate were measured daily, and chlorophyll fluorescence, carboxylation efficiency, chlorophyll content, and SOD activity were measured after 1 week. In P. orientalis, photosynthesis and stomatal conductance were not decreased in the 2h/day ozone treatment, but the L. tulipifera response was more sensitive even in the 2h/day ozone treatment. Increased treatment time decreased photosynthesis and stomatal conductance. Chlorophyll fluorescence was not significantly different among treatment times. However, carboxylation efficiency decreased with increased treatment time, and L. tulipifera was more sensitive than P. orientalis. Chlorophyll content did not differ with species or treatment time. SOD activity response was greater in L. tulipifera than in P. orientalis, increasing to $131\%$ of pretreatment observations. Therefore it was concluded that L. tulipifera was more responsive and had lower ozone tolerance than P. orientalis.

Studies on the Physiological and Biochemical Mechanisms of the Drought Resistance in Winter Barley (대맥한발저항성 기작에 관한 생리적 및 생화학적 연구)

  • 최원열;김용환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.451-457
    • /
    • 1983
  • This study was conducted to estimate the effect of the drought on the changes of chlorophyll, protein and proline content of upper three leaves, and the grain yield components of barley plant (CV. baegdong) subjected to water stress at four stages: late vegetative, boot, anthesis early grain filling. 1. In comparison with leaf posititions in water stress, the first leaf below flag leaf maintained the highest relative turgidity, chlorophyll and protein content and showed the least proline accumulation. And, in terms of growth stages in water stress, chlorophyll was shown to be highest at anthesis stage, protein being highest at boot stage and proline being least at boot stage. 2. In boot stages, culm and spike length, and Number of grains per spike were remarkably decreased. And the weight of 1000 grains was at least level in the early grain filling stage, and also the grain size was comparatively decreased at boot and two following stages. 3. The protein content of grain by water stress, apart from early grain filling stage, was not significantly affected by water stress at different growth stages. 4. The rate of sterility was particularly increased at boot and anthesis stages. 5. It was eventually concluded that the boot stage among four growth stages, and the flag leaf in 3 leaf positions were mostly damaged by water stress at reproductive growth stage.

  • PDF